Skip to main content
U.S. flag

An official website of the United States government

Stream Water Quality and Resources

The USGS collects continuous and discrete discharge and water-quality data at numerous locations on rivers and streams in the Long Island Sound drainage basin. Discharge data support assessments of water use and sustainability, drought monitoring, and flood forecasting. Projects are conducted to characterize variations and trends in stream chemistry and constituent loads to Long Island Sound.

Filter Total Items: 17

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
link

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
Learn More

Base-Flow Water Quality Sampling in Small Basins Draining to Long Island Sound

During the past 20 years, nitrogen loads to Long Island Sound (LIS) have been substantially reduced in large watersheds affected by municipal wastewater loads.
link

Base-Flow Water Quality Sampling in Small Basins Draining to Long Island Sound

During the past 20 years, nitrogen loads to Long Island Sound (LIS) have been substantially reduced in large watersheds affected by municipal wastewater loads.
Learn More

Water Quality Sampling in the Tributaries of the Long Island Sound

Coastal estuaries in southern New England and New York show the effects of excess nutrients and coastal eutrophication. These include excessive growth of macroalgae, excessive blooms of phytoplankton, oxygen depletion, hypoxia and deteriorated substrates. State and Federal regulators have responded to these nutrient-caused impairments by requiring more stringent permit limits for National...
link

Water Quality Sampling in the Tributaries of the Long Island Sound

Coastal estuaries in southern New England and New York show the effects of excess nutrients and coastal eutrophication. These include excessive growth of macroalgae, excessive blooms of phytoplankton, oxygen depletion, hypoxia and deteriorated substrates. State and Federal regulators have responded to these nutrient-caused impairments by requiring more stringent permit limits for National...
Learn More

COAWST: A Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System

Understanding the processes responsible for coastal change is important for managing both our natural and economic coastal resources. Storms are one of the primary driving forces causing coastal change from a coupling of wave- and wind-driven flows. To better understand storm impacts and their effects on our coastlines, there is an international need to better predict storm paths and intensities...
link

COAWST: A Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System

Understanding the processes responsible for coastal change is important for managing both our natural and economic coastal resources. Storms are one of the primary driving forces causing coastal change from a coupling of wave- and wind-driven flows. To better understand storm impacts and their effects on our coastlines, there is an international need to better predict storm paths and intensities...
Learn More

Assessment of fecal contamination sources to Alley Creek, Queens County, New York

PROBLEM Alley Creek, a tributary to Little Neck Bay (Queens County, New York; figure 1) has been designated as impaired by the New York State Department of Environmental Conservation (NYS DEC) for primary and secondary contact and included on the 303(d) Impaired Waterways for pathogens related to combined sewer overflow contributions. The New York City Department of Environmental Protection (NYC
link

Assessment of fecal contamination sources to Alley Creek, Queens County, New York

PROBLEM Alley Creek, a tributary to Little Neck Bay (Queens County, New York; figure 1) has been designated as impaired by the New York State Department of Environmental Conservation (NYS DEC) for primary and secondary contact and included on the 303(d) Impaired Waterways for pathogens related to combined sewer overflow contributions. The New York City Department of Environmental Protection (NYC
Learn More

Connecticut Water Use

Background The U.S. Geological Survey has compiled the Nation's water-use data at the county, State, and national levels every 5 years between 1950 and 2015. The most recent estimated water-use compilation was completed in 2015. - The New England Water Science Center (WSC) collected, reviewed, and aggregated water withdrawal data in Connecticut from different sources (groundwater and surface water...
link

Connecticut Water Use

Background The U.S. Geological Survey has compiled the Nation's water-use data at the county, State, and national levels every 5 years between 1950 and 2015. The most recent estimated water-use compilation was completed in 2015. - The New England Water Science Center (WSC) collected, reviewed, and aggregated water withdrawal data in Connecticut from different sources (groundwater and surface water...
Learn More

Sea-Level Rise Hazards and Decision Support

The Sea-Level Rise Hazards and Decision-Support project assesses present and future coastal vulnerability to provide actionable information for management of our Nation’s coasts. Through multidisciplinary research and collaborative partnerships with decision-makers, physical, biological, and social factors that describe landscape and habitat changes are incorporated in a probabilistic modeling...
link

Sea-Level Rise Hazards and Decision Support

The Sea-Level Rise Hazards and Decision-Support project assesses present and future coastal vulnerability to provide actionable information for management of our Nation’s coasts. Through multidisciplinary research and collaborative partnerships with decision-makers, physical, biological, and social factors that describe landscape and habitat changes are incorporated in a probabilistic modeling...
Learn More

Water Quality Sampling and Monitoring of the Pawcatuck River Watershed

The Pawcatuck River and the Pawcatuck River Estuary and Little Narragansett Bay form part of the boundary between the States of Connecticut and Rhode Island. Both states have identified water quality impairments within these waters related to nutrients (insufficient oxygen) and bacteria. Studies of the eutrophication potential of Long Island Sound embayments have identified that the Pawcatuck...
link

Water Quality Sampling and Monitoring of the Pawcatuck River Watershed

The Pawcatuck River and the Pawcatuck River Estuary and Little Narragansett Bay form part of the boundary between the States of Connecticut and Rhode Island. Both states have identified water quality impairments within these waters related to nutrients (insufficient oxygen) and bacteria. Studies of the eutrophication potential of Long Island Sound embayments have identified that the Pawcatuck...
Learn More

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
link

Estuarine Processes, Hazards, and Ecosystems

Estuarine processes, hazards, and ecosystems describes several interdisciplinary projects that aim to quantify and understand estuarine processes through observations and numerical modeling. Both the spatial and temporal scales of these mechanisms are important, and therefore require modern instrumentation and state-of-the-art hydrodynamic models. These projects are led from the U.S. Geological...
Learn More

Surface Water Quality Monitoring in Connecticut

The 2,983 miles of streams in Connecticut support a range of uses, including drinking water, recreation, and fish and shellfish habitat. The State is required by the Clean Water Act to assess the health of these waters every two years.
link

Surface Water Quality Monitoring in Connecticut

The 2,983 miles of streams in Connecticut support a range of uses, including drinking water, recreation, and fish and shellfish habitat. The State is required by the Clean Water Act to assess the health of these waters every two years.
Learn More

Beach-dependent Shorebirds

Policy-makers, individuals from government agencies, and natural resource managers are under increasing pressure to manage changing coastal areas to meet social, economic, and natural resource demands, particularly under a regime of sea-level rise. Scientific knowledge of coastal processes and habitat-use can support decision-makers as they balance these often-conflicting human and ecological...
link

Beach-dependent Shorebirds

Policy-makers, individuals from government agencies, and natural resource managers are under increasing pressure to manage changing coastal areas to meet social, economic, and natural resource demands, particularly under a regime of sea-level rise. Scientific knowledge of coastal processes and habitat-use can support decision-makers as they balance these often-conflicting human and ecological...
Learn More

Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

The purpose of this work is to better understand the effects of dam removal on local hydraulics, fish passage, and flooding. This study is part of a larger effort to monitor ecological resilience changes at nine Hurricane Sandy coastal resiliency aquatic connectivity restoration projects. It will contribute crucial knowledge that will be used to improve aquatic connectivity system cost...
link

Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

The purpose of this work is to better understand the effects of dam removal on local hydraulics, fish passage, and flooding. This study is part of a larger effort to monitor ecological resilience changes at nine Hurricane Sandy coastal resiliency aquatic connectivity restoration projects. It will contribute crucial knowledge that will be used to improve aquatic connectivity system cost...
Learn More