Pacific Coastal and Marine Science Center

Coastal Change

USGS research helps managers better understand and project the physical impacts of storms, climate change, and sea-level rise on coastal systems—from the permafrost coasts of Alaska, to the Puget Sound estuary, the California coast, and low-lying Pacific atolls. Coastlines are dynamic, with sediments accumulating or eroding from beaches and tidal marshes, storm waves eroding cliffs, and sea-level rise threatening low-lying coastal communities.

Filter Total Items: 32
Date published: October 15, 2021
Status: Active

Climate impacts to Arctic coasts

The Arctic region is warming faster than anywhere else in the nation. Understanding the rates and causes of coastal change in Alaska is needed to identify and mitigate hazards that might affect people and animals that call Alaska home.

Date published: September 30, 2021
Status: Active

Remote Sensing Coastal Change

We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.

Date published: September 30, 2021
Status: Active

Using Video Imagery to Study Coastal Change: Santa Cruz Beaches

Two video cameras atop the Dream Inn hotel in Santa Cruz, California, overlook the coast in northern Monterey Bay. One camera looks eastward over Santa Cruz Main Beach and boardwalk, while the other looks southward over Cowells Beach.

Date published: September 30, 2021
Status: Active

Using Video Imagery to Study Wave Dynamics: Unalakleet

USGS scientists installed two video cameras atop a windmill tower in Unalakleet, Alaska, pointing westward over Norton Sound, to observe and quantify coastal processes such as wave run-up, development of rip channels, bluff erosion, and movement of sandbars and ice floes.

Date published: September 30, 2021
Status: Active

Using Video Imagery to Study Sediment Transport and Wave Dynamics: Nuvuk (Point Barrow)

Two coastal observing video cameras are installed atop a utility pole near the northernmost point of land in the United States, at Nuvuk (Point Barrow), Alaska. The cameras point northwest toward the Arctic Ocean and the boundary between the Chukchi and Beaufort Seas, and will be used to observe and quantify coastal processes such as wave run-up, bluff erosion, movement of sandbars and ice...

Date published: September 30, 2021
Status: Active

Using Video Imagery to Study Coastal Change: Sunset State Beach

Two video cameras overlook the coast at Sunset State Beach in Watsonville, California. Camera 1 looks northwest while Camera 2 looks north. The cameras are part of the Remote Sensing Coastal Change project.

Date published: September 30, 2021
Status: Active

Using Video Imagery to Study Wave Dynamics: Tres Palmas

Four video cameras look westward over the coast and the coral reef at Tres Palmas in Rincón, on the west coast of Puerto Rico. Two cameras look out at the horizon and over the ocean for the mid-field view; one camera offers a zoomed-in, far-field view overlooking the reef and out to the island of Desecheo, a U.S. National Wildlife Refuge; and another camera focuses on the beach.

Contacts: Curt Storlazzi, PhD, Miguel Canals-Silander, Patricia Chardon Maldonado
Date published: September 29, 2021
Status: Active

Coastal Habitats in Puget Sound

A Pacific Northwest icon, Puget Sound is the second-largest estuary in the United States. Its unique geology, climate, and nutrient-rich waters produce and sustain biologically productive coastal habitats. These same natural characteristics also contribute to a high quality of life that has led to growth in human population and urbanization. This growth has played a role in degrading the Sound...

Date published: September 15, 2021
Status: Active

Sediment Transport in Coastal Environments

Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to...

Date published: September 15, 2021
Status: Active

PS-CoSMoS: Puget Sound Coastal Storm Modeling System

The CoSMoS model is currently available for most of the California coast and is now being expanded to support the 4.5 million coastal residents of the Puget Sound region, with emphasis on the communities bordering the sound.

Date published: September 7, 2021
Status: Active

Quantifying Flood Risk and Reef Risk Reduction Benefits in Florida and Puerto Rico: The Consequences of Hurricane Damage, Long-term Degradation, and Restoration Opportunities

Coastal flooding and erosion from extreme weather events affect thousands of vulnerable coastal communities; the impacts of coastal flooding are predicted to worsen during this century because of population growth and climate change. Hurricanes Irma and Maria in 2017 were particularly devasting to humans and natural communities. The coral reefs off the State of Florida and the Commonwealth of...

Contacts: Curt Storlazzi, PhD, Michael Beck, Borja Reguero, Shay Viehman, Kim Yates
Date published: September 1, 2021
Status: Active

Coastal Climate Impacts

The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal...