Skip to main content
U.S. flag

An official website of the United States government

Publications

This list of Upper Midwest Water Science Center publications spans from 1899 to present. It includes both official USGS publications and journal articles authored by our scientists. To access the full, searchable catalog of USGS publications, please visit the USGS Publications Warehouse.

Filter Total Items: 1928

Towards improved environmental modeling outcomes: Enabling low-cost access to high-dimensional, geostatistical-based decision-support analyses

Computer models of environmental systems routinely inform decision making for water resource management. In this context, quantifying uncertainty in the important simulated outputs, and reducing uncertainty through assimilating historic system-state observations, is as important as the numerical model. However, implementing high-dimensional and stochastic workflows are challenging, often requiring

Assessment of groundwater trends near Crex Meadows, Wisconsin

Crex Meadows Wildlife Area (Crex) is a 30,000-acre property in Burnett County, Wisconsin. Crex is managed by the Wisconsin Department of Natural Resources (WDNR) with the goal of providing public recreation opportunities while also protecting the quality of native ecological communities and species on the property. The WDNR’s management strategy includes controlling water levels at flowages in Cre

Examining historical mercury sources in the Saint Louis River estuary: How legacy contamination influences biological mercury levels in Great Lakes coastal regions

Industrial chemical contamination within coastal regions of the Great Lakes can pose serious risks to wetland habitat and offshore fisheries, often resulting in fish consumption advisories that directly affect human and wildlife health. Mercury (Hg) is a contaminant of concern in many of these highly urbanized and industrialized coastal regions, one of which is the Saint Louis River estuary (SLRE)

Partitioning and transformation of organic and inorganic phosphorus among dissolved, colloidal and particulate phases in a hypereutrophic freshwater estuary

Phosphorus (P) loadings to the Great Lakes have been regulated for decades, but re-eutrophication and seasonal hypoxia have recently been increasingly reported. It is of paramount importance to better understand the fate, transformation, and biogeochemical cycling processes of different P species across the river-lake interface. We report here results on chemical speciation of P in the seasonally

Inconsistent browning of northeastern U.S. lakes despite increased precipitation and recovery from acidification

Multiple studies have reported widespread browning of Northern Hemisphere lakes. Most examples are from boreal lakes that have experienced limited human influence, and browning has alternatively been attributed to changes in atmospheric deposition, climate, and land use. To determine the extent and possible causes of browning across a more geographically diverse region, we examined watercolor and

Cyanotoxin mixture models: Relating environmental variables and toxin co-occurrence to human exposure risk

Toxic cyanobacterial blooms, often containing multiple toxins, are a serious public health issue. However, there are no known models that predict a cyanotoxin mixture (anatoxin-a, microcystin, saxitoxin). This paper presents two cyanotoxin mixture models (MIX) and compares them to two microcystin (MC) models from data collected in 2016–2017 from three recurring cyanobacterial bloom locations in Ka

Nitrogen and phosphorus sources and delivery from the Mississippi/Atchafalaya River Basin: An update using 2012 SPARROW models

Nitrogen (N) and phosphorus (P) inputs throughout the Mississippi/Atchafalaya River Basin (MARB) have been linked to the Gulf of Mexico hypoxia and water‐quality problems throughout the MARB. To describe N and P loading throughout the MARB, SPAtially Referenced Regression On Watershed attributes (SPARROW) models were previously developed based on nutrient inputs and management similar to 1992 and

Machine learning predicted redox conditions in the glacial aquifer system, northern continental United States

Groundwater supplies 50% of drinking water worldwide and 30% in the United States. Geogenic and anthropogenic contaminants can, however, compromise water quality, thus limiting groundwater availability. Reduction/oxidation (redox) processes and redox conditions affect groundwater quality by influencing the mobility and transport of common geogenic and anthropogenic contaminants. In the glacial aqu

Long-term trends in regional wet mercury deposition and lacustrine mercury concentrations in four lakes in Voyageurs National Park

Although anthropogenic mercury (Hg) releases to the environment have been substantially lowered in the United States and Canada since 1990, concerns remain for contamination in fish from remote lakes and rivers where atmospheric deposition is the predominant source of mercury. How have aquatic ecosystems responded? We report on one of the longest known multimedia data sets for mercury in atmospher

Re‐purposing groundwater flow models for age assessments: Important characteristics

Groundwater flow model construction is often time‐consuming and costly, with development ideally focused on a specific purpose, such as quantifying well capture from water bodies or providing flow fields for simulating advective transport. As environmental challenges evolve, the incentive to re‐purpose existing groundwater flow models may increase. However, few studies have evaluated which charact

National-scale reservoir thermal energy storage pre-assessment for the United States

The U.S. Geological Survey is performing a pre-assessment of the cooling potential for reservoir thermal energy storage (RTES) in five generalized geologic regions (Basin and Range, Coastal Plains, Illinois Basin, Michigan Basin, Pacific Northwest) across the United States. Reservoir models are developed for the metropolitan areas of eight cities (Albuquerque, New Mexico; Charleston, South Carolin

Months-long spike in aqueous Arsenic following domestic well installation and disinfection: Short- and long-term drinking water quality implications

Exposure to high concentration geogenic arsenic via groundwater is a worldwide health concern. Well installation introduces oxic drilling fluids and hypochlorite (a strong oxidant) for disinfection, thus inducing geochemical disequilibrium. Well installation causes changes in geochemistry lasting 12 + months, as illustrated in a recent study of 250 new domestic wells in Minnesota, north-central Un