Climate Research and Development Program

Climate Change

Variability in the Earth's climate system affects the location and health of terrestrial and marine ecosystems; the distribution, quantity, and quality of water resources; and the sustainability of human societies. The Climate R&D Program applies geological, geochemical, ecological, and other analyses to document rates, amplitudes, causes, and impacts of climate change through Earth’s history.

Filter Total Items: 35
Date published: June 10, 2021
Status: Active

National Climate Change Viewer (NCCV)

We are pleased to release a major revision to the USGS National Climate Change Viewer (NCCV). The NCCV includes the historical (1950-2005) and future (2006-2099) climate and water balance projections derived from 20 downscaled CMIP5 climate models for the RCP4.5 and RCP8.5 emissions scenarios.

Contacts: Jay Alder
Date published: January 25, 2021
Status: Active

Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)

Warming and thawing of permafrost soils in the Arctic is expected to become widespread over the coming decades.  Permafrost thaw changes ecosystem structure and function, affects resource availability for wildlife and society, and decreases ground stability which affects human infrastructure. Since permafrost soils contain about half of the global soil carbon (C) pool, the magnitude of C...

Date published: December 2, 2020
Status: Active

Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Drought and fire are powerful disturbance agents that can trigger rapid and lasting changes in the forests of western North America. Over the last decade, increases in fire size and severity coincided with warming, drought, and earlier snowmelt, factors that projected climatic changes are likely to exacerbate. However, recent observations are brief relative to the lifespans of trees and...

Date published: November 10, 2020
Status: Active

Quaternary Hydroclimate Records of Spring Ecosystems

Desert springs and wetlands are among the most biologically productive, diverse, and fragile ecosystems on Earth. They are home to thousands of rare, endemic, and endangered plants and animals and reflect the availability and health of emergent groundwater. Despite the ecological importance of these wetlands, our knowledge of how they might respond to predicted future climate change is limited...

Date published: October 29, 2020
Status: Active

USGS Snow and Avalanche Project

Snow avalanches are a widespread natural hazard to humans and infrastructure as well as an important landscape disturbance affecting mountain ecosystems. Forecasting avalanche frequency is challenging on various spatial and temporal scales, and this project aims to fill a gap in snow science by focusing on reconstructing avalanche history on the continental mountain range scale - throughout...

Date published: April 17, 2020
Status: Active

The Response of Coastal Wetlands to Sea-level Rise: Understanding how Macroscale Drivers Influence Local Processes and Feedbacks

The purpose of this work is to advance our understanding of how coastal wetland responses to sea-level rise (SLR) within the conterminous United States are likely to vary as a function of local, regional, and macroscale drivers, including climate. Based on our interactions with managers and decision makers, as well as our knowledge of the current state of the science, we propose to: (a)...

Date published: March 25, 2020
Status: Active

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...

Date published: February 26, 2020
Status: Active

Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater.  As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One...

Contacts: Ken Krauss, Ph.D., Gregory Noe, Camille LaFosse Stagg, Ph.D., Hongqing Wang, Ph.D., Eric J Ward, Ph.D., Jamie A. Duberstein, William H. Conner, Zhaohua Dai, Thomas L. O'Halloran
Date published: October 23, 2019
Status: Active

Drivers and Impacts of North Pacific Climate Variability

Climate model forecasts indicate an increase in extreme hydrologic events, including floods and droughts, for California and the western U.S. in the future. To better understand what the consequences of this future change in climate may be, USGS scientists are studying the frequency, magnitude, and impacts of past hydroclimate variability and extremes in the region. This project produces well-...

Date published: July 1, 2019
Status: Active

Future Scenarios of Land Use and Land Cover Change for Integrated Resources Assessment

This research project aims to develop a portfolio approach to development of land change scenarios for the United States based on empirical data and global integrated assessment modeling.This research will continue the development and capabilities of the Land Use and Carbon Scenario Simulator (LUCAS), which has been developed by USGS scientists for the purposes of projecting land change and...

Date published: May 30, 2019
Status: Active

Wetlands in the Quaternary

Wetlands accumulate organic-rich sediment or peat stratigraphically, making them great archives of past environmental change. Wetlands also act as hydrologic buffers on the landscape and are important to global biogeochemical cycling. This project uses wetland archives from a range of environments to better understand how vegetation, hydrology, and hydroclimate has changed on decadal to multi-...

Date published: April 22, 2019
Status: Active

Actual evapotranspiration, flash droughts, water deficits, reduced vegetative growth, and wildfires: the effects of seasonally water-limited conditions in a changing climate

The Southeastern U.S. experiences recurring hydrologic droughts, which can reduce water availability for human consumption and ecosystem services, leading to plant stress and reduced plant growth. This project examines relationships between drought and the water cycle in the Southeast with data from the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia and other Southeastern...