Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
How many eruptions have there been in the Cascades during the last 4,000 years?
Eruptions in the Cascades have occurred at an average rate of one to two per century during the last 4,000 years. Future eruptions are certain.
Learn more:
Related Content
How dangerous is Mount Rainier?
Although Mount Rainier has not produced a significant eruption in the past 500 years, it is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes , active hydrothermal system , and extensive glacier mantle. Mount Rainier has 25 major glaciers containing more than five times as much snow and ice as all the other Cascade volcanoes combined. If...
How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?
Eruptions of Mount Rainier usually produce much less volcanic ash than do eruptions at Mount St. Helens . However, owing to the volcano's great height and widespread cover of snow and glacier ice, eruption triggered debris flows ( lahars ) at Mount Rainier are likely to be much larger--and will travel a greater distance--than those at Mount St. Helens in 1980. Furthermore, areas at risk from...
When did Lassen Peak last erupt?
The most recent eruptive activity at Lassen Peak (California) took place in 1914-1917. This eruptive episode began on May 30, 1914, when a small phreatic eruption occurred at a new vent near the summit of the peak. More than 150 explosions of various sizes occurred during the following year. By mid-May 1915, the eruption changed in character; lava appeared in the summit crater and subsequently...
Why is it important to monitor volcanoes?
There are 161 potentially active volcanoes in the United States. According to a 2018 USGS assessment , 57 volcanoes are a high threat or very high threat to public safety. Many of these volcanoes have erupted in the recent past and will erupt again in the foreseeable future. As populations increase, areas near volcanoes are being developed and aviation routes are increasing. As a result, more...
How often does Mount Shasta erupt?
USGS scientists are currently working on this question. Mount Shasta doesn’t erupt on a regular timescale. Research indicates that the volcano erupts episodically with ten or more eruptions occurring in short (500-2,000 year) time periods separated by long intervals (3,000-5,000 years) with few or no eruptions. Evidence suggests that magma most recently erupted at the surface about 3,200 years ago...
How old is Mount St. Helens?
The eruptive history of Mount St. Helens began about 40,000 years ago with dacitic volcanism, which continued intermittently until about 2,500 years ago. This activity included numerous explosive eruptions over periods of hundreds to thousands of years, which were separated by apparent dormant intervals ranging in length from a few hundred to about 15,000 years. The range of rock types erupted by...
How far did the ash from Mount St. Helens travel?
The May 18, 1980 eruptive column at Mount St. Helens fluctuated in height through the day, but the eruption subsided by late afternoon. By early May 19, the eruption had stopped. By that time, the ash cloud had spread to the central United States. Two days later, even though the ash cloud had become more diffuse, fine ash was detected by systems used to monitor air pollution in several cities of...
Do earthquakes large enough to collapse buildings and roads accompany volcanic eruptions?
Not usually. Earthquakes associated with eruptions rarely exceed magnitude 5, and these moderate earthquakes are not big enough to destroy buildings and roads. The largest earthquakes at Mount St. Helens in 1980 were magnitude 5, large enough to sway trees and damage buildings, but not destroy them. During the huge eruption of Mount Pinatubo in the Philippines in 1991, dozens of light to moderate...
Will extinct volcanoes on the east coast of the U.S. erupt again?
No. The geologic forces that generated volcanoes in the eastern United States millions of years ago no longer exist. Through plate tectonics, the eastern U.S. has been isolated from the global tectonic features (tectonic plate boundaries and hot spots in the mantle), that cause volcanic activity. So new volcanic activity is not possible now or in the near future. If you wait around several hundred...
Which volcanoes in the conterminous United States have erupted since the Nation was founded?
Excluding steam eruptions, these volcanoes have shown activity: Mount St. Helens, Washington - Eruptions and/or lava dome growth occurred in the late 1700s, 1800-1857, 1980-1986, and 2004-2008. Lassen Peak, California - A series of steam blasts began on May 30, 1914. An eruption occurred 12 months later on May 21, 1915. Minor activity continued through the middle of 1917. Mount Hood, Oregon -...
Where does the United States rank in the number of volcanoes?
The United States ranks third, behind Indonesia and Japan, in the number of historically active volcanoes (that is, those for which we have written accounts of eruptions). In addition, about 10 percent of the more than 1,500 volcanoes that have erupted in the past 10,000 years are located in the United States. Most of these volcanoes are found in the Aleutian Islands, the Alaska Peninsula, the...
What kind of school training do you need to become a volcanologist?
There are many paths to becoming a volcanologist. Most include a college or graduate school education in a scientific or technical field, but the range of specialties is very large. Training in geology, geophysics, geochemistry, biology, biochemistry, mathematics, statistics, engineering, atmospheric science, remote sensing, and related fields can be applied to the study of volcanoes and the...
Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
Mount Rainier volcano looms over Puyallup Valley, near Orting, Washington.
Mount Rainier volcano looms over Puyallup Valley, near Orting, Washington.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
Bill Burton discusses the June 6-8, 1912 eruption of Mount Katmai in Alaska which was 30 times larger than the eruption of Mt. St. Helens in 1980. This eruption caused widespread devastation, and inspired heroic efforts at survival by the local people.
Bill Burton discusses the June 6-8, 1912 eruption of Mount Katmai in Alaska which was 30 times larger than the eruption of Mt. St. Helens in 1980. This eruption caused widespread devastation, and inspired heroic efforts at survival by the local people.
Debris flows are hazardous flows of rock, sediment and water that surge down mountain slopes and into adjacent valleys. Hydrologist Richard Iverson describes the nature of debris-flow research and explains how debris flow experiments are conducted at the USGS Debris Flow Flume, west of Eugene, Oregon.
Debris flows are hazardous flows of rock, sediment and water that surge down mountain slopes and into adjacent valleys. Hydrologist Richard Iverson describes the nature of debris-flow research and explains how debris flow experiments are conducted at the USGS Debris Flow Flume, west of Eugene, Oregon.
A photograph of Mount Adams, Washington. This image was taken as part of the Land Cover Trends Project field varification for land cover data.
A photograph of Mount Adams, Washington. This image was taken as part of the Land Cover Trends Project field varification for land cover data.
View of Mount Hood from Pittock Mansion, Portland, OR.
View of Mount Hood from Pittock Mansion, Portland, OR.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
Mount St. Helens reawakened in late September 2004. Small magnitude earthquakes beneath the 1980-1986 lava dome increased in frequency and size, and a growing welt formed on the southeast margin of the previous lava dome and nearby portions of Crater Glacier.
Mount St. Helens reawakened in late September 2004. Small magnitude earthquakes beneath the 1980-1986 lava dome increased in frequency and size, and a growing welt formed on the southeast margin of the previous lava dome and nearby portions of Crater Glacier.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
Photo of Redoubt and vicinity taken from the gas/obs fixed-wing flight.
Photo of Redoubt and vicinity taken from the gas/obs fixed-wing flight.
The volcanoes from closest to farthest are Mt. Washington, Three Fingered Jack, Mt. Jefferson. This picture is taken from Middle Sister looking north in the Cascade Range, Three Sisters Wilderness Area, Deschutes National Forest, Oregon.
The volcanoes from closest to farthest are Mt. Washington, Three Fingered Jack, Mt. Jefferson. This picture is taken from Middle Sister looking north in the Cascade Range, Three Sisters Wilderness Area, Deschutes National Forest, Oregon.
The Volcano Hazards Program — Strategic science plan for 2022–2026
How would a volcanic eruption affect your Tribe?
When volcanoes fall down—Catastrophic collapse and debris avalanches
2018 update to the U.S. Geological Survey national volcanic threat assessment
When erupting, all volcanoes pose a degree of risk to people and infrastructure, however, the risks are not equivalent from one volcano to another because of differences in eruptive style and geographic location. Assessing the relative threats posed by U.S. volcanoes identifies which volcanoes warrant the greatest risk-mitigation efforts by the U.S. Geological Survey and its partners. This update
Field-trip guides to selected volcanoes and volcanic landscapes of the western United States
U.S. Geological Survey Volcano Hazards Program—Assess, forecast, prepare, engage
Mount St. Helens, 1980 to now—what’s going on?
Mount Rainier— Living safely with a volcano in your backyard
Eruptions in the Cascade Range during the past 4,000 years
Volcano hazards: A national threat
What are volcano hazards?
Volcanoes!
Related Content
How dangerous is Mount Rainier?
Although Mount Rainier has not produced a significant eruption in the past 500 years, it is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes , active hydrothermal system , and extensive glacier mantle. Mount Rainier has 25 major glaciers containing more than five times as much snow and ice as all the other Cascade volcanoes combined. If...
How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?
Eruptions of Mount Rainier usually produce much less volcanic ash than do eruptions at Mount St. Helens . However, owing to the volcano's great height and widespread cover of snow and glacier ice, eruption triggered debris flows ( lahars ) at Mount Rainier are likely to be much larger--and will travel a greater distance--than those at Mount St. Helens in 1980. Furthermore, areas at risk from...
When did Lassen Peak last erupt?
The most recent eruptive activity at Lassen Peak (California) took place in 1914-1917. This eruptive episode began on May 30, 1914, when a small phreatic eruption occurred at a new vent near the summit of the peak. More than 150 explosions of various sizes occurred during the following year. By mid-May 1915, the eruption changed in character; lava appeared in the summit crater and subsequently...
Why is it important to monitor volcanoes?
There are 161 potentially active volcanoes in the United States. According to a 2018 USGS assessment , 57 volcanoes are a high threat or very high threat to public safety. Many of these volcanoes have erupted in the recent past and will erupt again in the foreseeable future. As populations increase, areas near volcanoes are being developed and aviation routes are increasing. As a result, more...
How often does Mount Shasta erupt?
USGS scientists are currently working on this question. Mount Shasta doesn’t erupt on a regular timescale. Research indicates that the volcano erupts episodically with ten or more eruptions occurring in short (500-2,000 year) time periods separated by long intervals (3,000-5,000 years) with few or no eruptions. Evidence suggests that magma most recently erupted at the surface about 3,200 years ago...
How old is Mount St. Helens?
The eruptive history of Mount St. Helens began about 40,000 years ago with dacitic volcanism, which continued intermittently until about 2,500 years ago. This activity included numerous explosive eruptions over periods of hundreds to thousands of years, which were separated by apparent dormant intervals ranging in length from a few hundred to about 15,000 years. The range of rock types erupted by...
How far did the ash from Mount St. Helens travel?
The May 18, 1980 eruptive column at Mount St. Helens fluctuated in height through the day, but the eruption subsided by late afternoon. By early May 19, the eruption had stopped. By that time, the ash cloud had spread to the central United States. Two days later, even though the ash cloud had become more diffuse, fine ash was detected by systems used to monitor air pollution in several cities of...
Do earthquakes large enough to collapse buildings and roads accompany volcanic eruptions?
Not usually. Earthquakes associated with eruptions rarely exceed magnitude 5, and these moderate earthquakes are not big enough to destroy buildings and roads. The largest earthquakes at Mount St. Helens in 1980 were magnitude 5, large enough to sway trees and damage buildings, but not destroy them. During the huge eruption of Mount Pinatubo in the Philippines in 1991, dozens of light to moderate...
Will extinct volcanoes on the east coast of the U.S. erupt again?
No. The geologic forces that generated volcanoes in the eastern United States millions of years ago no longer exist. Through plate tectonics, the eastern U.S. has been isolated from the global tectonic features (tectonic plate boundaries and hot spots in the mantle), that cause volcanic activity. So new volcanic activity is not possible now or in the near future. If you wait around several hundred...
Which volcanoes in the conterminous United States have erupted since the Nation was founded?
Excluding steam eruptions, these volcanoes have shown activity: Mount St. Helens, Washington - Eruptions and/or lava dome growth occurred in the late 1700s, 1800-1857, 1980-1986, and 2004-2008. Lassen Peak, California - A series of steam blasts began on May 30, 1914. An eruption occurred 12 months later on May 21, 1915. Minor activity continued through the middle of 1917. Mount Hood, Oregon -...
Where does the United States rank in the number of volcanoes?
The United States ranks third, behind Indonesia and Japan, in the number of historically active volcanoes (that is, those for which we have written accounts of eruptions). In addition, about 10 percent of the more than 1,500 volcanoes that have erupted in the past 10,000 years are located in the United States. Most of these volcanoes are found in the Aleutian Islands, the Alaska Peninsula, the...
What kind of school training do you need to become a volcanologist?
There are many paths to becoming a volcanologist. Most include a college or graduate school education in a scientific or technical field, but the range of specialties is very large. Training in geology, geophysics, geochemistry, biology, biochemistry, mathematics, statistics, engineering, atmospheric science, remote sensing, and related fields can be applied to the study of volcanoes and the...
Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
Mount Rainier volcano looms over Puyallup Valley, near Orting, Washington.
Mount Rainier volcano looms over Puyallup Valley, near Orting, Washington.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
Bill Burton discusses the June 6-8, 1912 eruption of Mount Katmai in Alaska which was 30 times larger than the eruption of Mt. St. Helens in 1980. This eruption caused widespread devastation, and inspired heroic efforts at survival by the local people.
Bill Burton discusses the June 6-8, 1912 eruption of Mount Katmai in Alaska which was 30 times larger than the eruption of Mt. St. Helens in 1980. This eruption caused widespread devastation, and inspired heroic efforts at survival by the local people.
Debris flows are hazardous flows of rock, sediment and water that surge down mountain slopes and into adjacent valleys. Hydrologist Richard Iverson describes the nature of debris-flow research and explains how debris flow experiments are conducted at the USGS Debris Flow Flume, west of Eugene, Oregon.
Debris flows are hazardous flows of rock, sediment and water that surge down mountain slopes and into adjacent valleys. Hydrologist Richard Iverson describes the nature of debris-flow research and explains how debris flow experiments are conducted at the USGS Debris Flow Flume, west of Eugene, Oregon.
A photograph of Mount Adams, Washington. This image was taken as part of the Land Cover Trends Project field varification for land cover data.
A photograph of Mount Adams, Washington. This image was taken as part of the Land Cover Trends Project field varification for land cover data.
View of Mount Hood from Pittock Mansion, Portland, OR.
View of Mount Hood from Pittock Mansion, Portland, OR.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
Mount St. Helens reawakened in late September 2004. Small magnitude earthquakes beneath the 1980-1986 lava dome increased in frequency and size, and a growing welt formed on the southeast margin of the previous lava dome and nearby portions of Crater Glacier.
Mount St. Helens reawakened in late September 2004. Small magnitude earthquakes beneath the 1980-1986 lava dome increased in frequency and size, and a growing welt formed on the southeast margin of the previous lava dome and nearby portions of Crater Glacier.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
USGS geologists gathered samples by hand from vents on the dome and crater floor. Additionally, sulfur dioxide gas was measured from a specially equipped airplane before, during, and after eruptions to determine "emission rates" for the volcano.
Photo of Redoubt and vicinity taken from the gas/obs fixed-wing flight.
Photo of Redoubt and vicinity taken from the gas/obs fixed-wing flight.
The volcanoes from closest to farthest are Mt. Washington, Three Fingered Jack, Mt. Jefferson. This picture is taken from Middle Sister looking north in the Cascade Range, Three Sisters Wilderness Area, Deschutes National Forest, Oregon.
The volcanoes from closest to farthest are Mt. Washington, Three Fingered Jack, Mt. Jefferson. This picture is taken from Middle Sister looking north in the Cascade Range, Three Sisters Wilderness Area, Deschutes National Forest, Oregon.
The Volcano Hazards Program — Strategic science plan for 2022–2026
How would a volcanic eruption affect your Tribe?
When volcanoes fall down—Catastrophic collapse and debris avalanches
2018 update to the U.S. Geological Survey national volcanic threat assessment
When erupting, all volcanoes pose a degree of risk to people and infrastructure, however, the risks are not equivalent from one volcano to another because of differences in eruptive style and geographic location. Assessing the relative threats posed by U.S. volcanoes identifies which volcanoes warrant the greatest risk-mitigation efforts by the U.S. Geological Survey and its partners. This update