Every day, millions of gallons of groundwater are pumped to supply drinking water for about 140 million people, almost one-half of the Nation’s population. Learn about the quality and availability of groundwater for drinking, where and why groundwater quality is degraded, and where groundwater quality is changing.
Featured: 3-D Models of As and Mn in the Glacial Aquifer System

New 3-D models from the USGS National Water Quality Program predict where high concentrations of arsenic and manganese likely occur in the glacial aquifer system, groundwater supply for 30 million. Redox conditions and pH are controlling factors.
Groundwater is our invisible, vital resource. The USGS National Water Quality Program (NWQP) is focusing on studies of principal aquifers, regionally extensive aquifers that are critical sources of groundwater used for public supply. The studies have two main thrusts:
- Current conditions and changes through time. These assessments characterize groundwater quality in principal aquifers, comparing concentrations of inorganic constituents, such as arsenic and nitrate, and organic constituents, such as pesticides and volatile organic compounds, to benchmarks established for the protection of human health. Tracking changes in groundwater quality through time and investigating the reasons for these changes is crucial for informing management decisions to protect and sustain our valuable groundwater resources. See how concentrations of metals, nutrients, pesticides, and organic contaminants in groundwater are changing during decadal periods across the Nation, and view real-time fluctuations in groundwater quality.
- Predicting groundwater quality. Statistical models and 3-D characterizations predict where a contaminant is likely to occur in groundwater, at what depth, and at what concentration. These forecasts anticipate water quality in areas where groundwater has not been sampled.
From 1991 to 2010, about 6,600 wells were sampled by the NWQP to document where contaminants occur and to develop an understanding of the natural and human factors that affect the occurrence of contaminants in the Nation’s groundwater. Learn about groundwater quality in the Nation’s principal aquifers, 1991–2010.
Explore USGS science on topics related to groundwater quality:
National Water Quality Assessment (NAWQA) Project
Contaminants in groundwater
Arsenic and Drinking Water
Chloride, Salinity, and Dissolved Solids
Emerging Contaminants
Metals and Other Trace Elements
Nutrients and Eutrophication
Pesticides and Water Quality
Radionuclides
Volatile organic compounds (VOCs)
Hydraulic Fracturing
Drinking and source-water quality
Corrosivity
Domestic (private) supply wells
Public-supply wells
Drinking-water taste and odor
Water-Quality Benchmarks for Contaminants
Processes affecting groundwater quality
Groundwater Age
Oxidation/Reduction (Redox)
How do we do it? Access USGS publications and manuals on National Water-Quality Project sampling methods.
Looking for information on surface-water quality as well? Explore these links:
Surface-Water Quality and Ecology
Groundwater/Surface-Water Interaction
National Water-Quality Assessment (NAWQA)
Nutrients and Eutrophication
Drinking Water and Source Water Research
Groundwater/Surface-Water Interaction
Hydraulic Fracturing
Chloride, Salinity, and Dissolved Solids
Arsenic and Drinking Water
Pesticides and Water Quality
Metals and Other Trace Elements
Corrosivity
Public Supply Wells
Domestic (Private) Supply Wells
Access our most recent groundwater-quality data.
Data Release for Secondary Hydrogeologic Regions of the Conterminous United States (ver. 2.0, June 2022)
Input and results from a boosted regression tree (BRT) model relating base flow nitrate concentrations in the Chesapeake Bay watershed to catchment characteristics (1970-2013)
Datasets from Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January through December 2016, and Previously Unpublished Data from 2013 to 2015
Data for Fluoride Occurrence in United States Groundwater
Generalized lithology of the conterminous United States
Laboratory Quality-Control Data Associated with Groundwater Samples Collected for Hormones and Pharmaceuticals by the National Water-Quality Assessment Project in 2013-15
Third-party performance assessment data encompassing the time period of analysis of groundwater samples collected for hormones and pharmaceuticals by the National Water-Quality Assessment Project in 2013-15
Environmental and Quality-Control Data Collected by the USGS National Water-Quality Assessment Project for Hormones and Pharmaceuticals in Groundwater Used as a Source of Drinking Water Across the United States, 2013-15
Datasets and metadata for estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology
Data Release for Metamodeling and Mapping of Nitrate Flux in the Unsaturated Zone and Groundwater, Wisconsin, USA
Datasets from Groundwater-Quality Data from the National Water-Quality Assessment Project, January through December 2014 and Select Quality-Control Data from May 2012 through December 2014
Data from Methane in Aquifers Used for Public Supply in the United States
Below, you’ll find the latest in peer-reviewed journal articles and USGS reports on groundwater water-quality issues.
Tritium as an indicator of modern, mixed, and premodern groundwater age
Groundwater quality in the Colorado Plateaus aquifers, western United States
Groundwater quality in selected Stream Valley aquifers, western United States
Groundwater quality in the Edwards-Trinity aquifer system
Groundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January 2017 through December 2019
Three-dimensional distribution of residence time metrics in the glaciated United States using metamodels trained on general numerical models
The occurrence and distribution of strontium in U.S. groundwater
Machine learning predictions of pH in the Glacial Aquifer System, Northern USA
Groundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January through December 2016, and previously unpublished data from 2013 to 2015
Fluoride occurrence in United States groundwater
The relation of geogenic contaminants to groundwater age, aquifer hydrologic position, water type, and redox conditions in Atlantic and Gulf Coastal Plain aquifers, eastern and south-central USA
Groundwater quality in the Ozark Plateaus aquifer system, central United States
Groundwater quality in the Biscayne aquifer, Florida
Groundwater Quality: Decadal Change
Almost one-half of the U.S. population rely on groundwater for their water supply, and demand for groundwater for public supply, irrigation, and agriculture continues to increase. This mapper shows how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation.
Contaminants present in many parts of the Glacial aquifer system
Are you one of 30 million Americans whose drinking-water supply relies on groundwater from the glacial aquifer system? A new USGS study assesses the quality of untreated groundwater from this critical water resource, which underlies parts of 25 northern U.S. states.
- Overview
Every day, millions of gallons of groundwater are pumped to supply drinking water for about 140 million people, almost one-half of the Nation’s population. Learn about the quality and availability of groundwater for drinking, where and why groundwater quality is degraded, and where groundwater quality is changing.
Featured: 3-D Models of As and Mn in the Glacial Aquifer SystemNew 3-D models from the USGS National Water Quality Program predict where high concentrations of arsenic and manganese likely occur in the glacial aquifer system, groundwater supply for 30 million. Redox conditions and pH are controlling factors.
Groundwater is our invisible, vital resource. The USGS National Water Quality Program (NWQP) is focusing on studies of principal aquifers, regionally extensive aquifers that are critical sources of groundwater used for public supply. The studies have two main thrusts:
Collecting groundwater data - Current conditions and changes through time. These assessments characterize groundwater quality in principal aquifers, comparing concentrations of inorganic constituents, such as arsenic and nitrate, and organic constituents, such as pesticides and volatile organic compounds, to benchmarks established for the protection of human health. Tracking changes in groundwater quality through time and investigating the reasons for these changes is crucial for informing management decisions to protect and sustain our valuable groundwater resources. See how concentrations of metals, nutrients, pesticides, and organic contaminants in groundwater are changing during decadal periods across the Nation, and view real-time fluctuations in groundwater quality.
- Predicting groundwater quality. Statistical models and 3-D characterizations predict where a contaminant is likely to occur in groundwater, at what depth, and at what concentration. These forecasts anticipate water quality in areas where groundwater has not been sampled.
From 1991 to 2010, about 6,600 wells were sampled by the NWQP to document where contaminants occur and to develop an understanding of the natural and human factors that affect the occurrence of contaminants in the Nation’s groundwater. Learn about groundwater quality in the Nation’s principal aquifers, 1991–2010.
Explore USGS science on topics related to groundwater quality:
National Water Quality Assessment (NAWQA) Project
Contaminants in groundwater
Arsenic and Drinking Water
Chloride, Salinity, and Dissolved Solids
Emerging Contaminants
Metals and Other Trace Elements
Nutrients and Eutrophication
Pesticides and Water Quality
Radionuclides
Volatile organic compounds (VOCs)
Hydraulic FracturingDrinking and source-water quality
Corrosivity
Domestic (private) supply wells
Public-supply wells
Drinking-water taste and odor
Water-Quality Benchmarks for ContaminantsProcesses affecting groundwater quality
Groundwater Age
Oxidation/Reduction (Redox)How do we do it? Access USGS publications and manuals on National Water-Quality Project sampling methods.
Looking for information on surface-water quality as well? Explore these links:
Surface-Water Quality and Ecology
Groundwater/Surface-Water Interaction
- Science
Filter Total Items: 20
National Water-Quality Assessment (NAWQA)
Our surface water, groundwater, and aquatic ecosystems are priceless resources, used by people across the Nation for drinking, irrigation, industry, and recreation. The National Water-Quality Assessment (NAWQA) Project is a leading source of scientific data and knowledge for development of science-based policies and management strategies to improve and protect our water resources.Nutrients and Eutrophication
Like people, plants need nutrients, but too much of a good thing can be a problem. Nutrients, such as nitrogen and phosphorus, occur naturally, but most of the nutrients in our waterways come from human activities and sources—fertilizers, wastewater, automobile exhaust, animal waste. The USGS investigates the source, transport, and fate of nutrients and their impacts on the world around us.Drinking Water and Source Water Research
Reliable drinking water is vital for the health and safety of all Americans. The USGS monitors and assesses the quality of the water used as a source for our nation's drinking water needs.Groundwater/Surface-Water Interaction
Water and the chemicals it contains are constantly being exchanged between the land surface and the subsurface. Surface water seeps into the ground and recharges the underlying aquifer—groundwater discharges to the surface and supplies the stream with baseflow. USGS Integrated Watershed Studies assess these exchanges and their effect on surface-water and groundwater quality and quantity.Hydraulic Fracturing
Hydraulic fracturing, commonly known as fracking, is the process of injecting water, sand, and/or chemicals into a well to break up underground bedrock to free up oil or gas reserves. The USGS monitors the environmental impact of this practice across the country, from potential earthquakes to degraded groundwater quality.Chloride, Salinity, and Dissolved Solids
All natural waters contain some dissolved solids (salinity) from contact with soils, rocks, and other natural materials. Too much, though, and dissolved solids can impair water use. Unpleasant taste, high water-treatment costs, mineral accumulation in plumbing, staining, corrosion, and restricted use for irrigation are among the problems associated with elevated concentrations of dissolved solids.Arsenic and Drinking Water
Arsenic is a naturally occurring element, but long-term exposure can cause cancer in people. There has been a substantial amount of research done to address arsenic in groundwater and drinking-water supplies around the country. The USGS studies local and national sources of arsenic to help health officials better manage our water resources.Pesticides and Water Quality
Pesticides are chemicals designed to kill pests, including insects (insecticides), weeds (herbicides), and fungi (fungicides). The USGS assesses the occurrence and behavior of pesticides in streams, lakes, and groundwater and the potential for pesticides to contaminate our drinking-water supplies or harm aquatic ecosystems.Metals and Other Trace Elements
Metals, metalloids, and radionuclides all are trace elements that occur naturally in the Earth's crust. In small quantities many trace elements are essential for health in all living organisms, but some trace elements can be toxic or cause cancer, and some can bioaccumulate. The USGS investigates where and how trace elements make their way into our Nation's surface water and groundwater.Corrosivity
Corrosivity describes how aggressive water is at corroding pipes and fixtures. Corrosive water can cause lead and copper in pipes to leach into drinking water and can eventually cause leaks in plumbing. Surface water and groundwater, both sources of drinking water, can potentially be corrosive.Public Supply Wells
Are you among the more than 100 million people in the U.S. who relies on a public-supply well for your drinking water? Although the quality of finished drinking water from public water systems is regulated by the EPA, long-term protection and management of the raw groundwater tapped by public-supply wells requires an understanding of the occurrence of contaminants in this invisible, vital resource...Domestic (Private) Supply Wells
More than 43 million people—about 15 percent of the U.S. population—rely on domestic (private) wells as their source of drinking water. The quality and safety of water from domestic wells are not regulated by the Federal Safe Drinking Water Act or, in most cases, by state laws. Instead, individual homeowners are responsible for maintaining their domestic well systems and for monitoring water... - Data
Access our most recent groundwater-quality data.
Filter Total Items: 17Data Release for Secondary Hydrogeologic Regions of the Conterminous United States (ver. 2.0, June 2022)
The U.S. Geological Survey (USGS) previously identified 62 Principal Aquifers (PAs) in the U.S., with 57 located in the conterminous states. The USGS characterized areas outside of PAs as “other rocks;” other rocks account for about 40% of the area of the conterminous states. This paper subdivides the large area identified as other rocks into Secondary Hydrogeologic Regions (SHRs). SHRs are defineInput and results from a boosted regression tree (BRT) model relating base flow nitrate concentrations in the Chesapeake Bay watershed to catchment characteristics (1970-2013)
This data release contains a boosted regression tree (BRT) model (written in the R programming language), and the input and output data from that model that were used to relate base flow nitrate concentrations in the Chesapeake Bay watershed to catchment characteristics. The input data consists of two types of information: 1) surface water nitrate concentrations collected by the USGS and partnerinDatasets from Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January through December 2016, and Previously Unpublished Data from 2013 to 2015
Groundwater-quality data were collected from 648 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program and are included in this report. Most of the wells (514) were sampled from January through December 2016 and 60 of them were sampled in 2013 and 74 in 2014. The data were collected from seven types of well networks: principal aData for Fluoride Occurrence in United States Groundwater
Data from 38,105 wells were used to characterize fluoride occurrence in untreated United States groundwater. The data were retrieved from the U.S. Geological Survey (USGS) National Water Information System (NWIS). Groundwater samples were collected from 1988 to 2017 in the conterminous United States. Data for groundwater included in this dataset are pH, water temperature, and concentrations of disGeneralized lithology of the conterminous United States
This dataset contains generalized lithologic classes (rocktypes) as reassigned from the USGS state geologic map compilation for the conterminous United States (Schweitzer, 2011). Lithology was classified into 12 generalized categories using the fields LITH62 and LITH62MINO available in Schweitzer (2011). Geospatial and tabular data associated with the generalized lithologic classes (rocktypes) areLaboratory Quality-Control Data Associated with Groundwater Samples Collected for Hormones and Pharmaceuticals by the National Water-Quality Assessment Project in 2013-15
This data set includes results for hormone and pharmaceutical compounds analyzed in laboratory quality-control samples associated with environmental samples collected by the National Water-Quality Assessment (NAWQA) Project during 2013 through 2015 for a study of groundwater resources used for drinking-water supply across the United States. Hormone and pharmaceutical results are provided for laborThird-party performance assessment data encompassing the time period of analysis of groundwater samples collected for hormones and pharmaceuticals by the National Water-Quality Assessment Project in 2013-15
This data set includes sample information and results for third-party performance assessment samples analyzed for hormones and pharmaceuticals during the same general time period as environmental samples collected by the National Water-Quality Assessment (NAWQA) Project for a study of groundwater resources used for drinking-water supply across the United States, 2013 through 2015. Hormone and pharEnvironmental and Quality-Control Data Collected by the USGS National Water-Quality Assessment Project for Hormones and Pharmaceuticals in Groundwater Used as a Source of Drinking Water Across the United States, 2013-15
This data set includes results for hormone and pharmaceutical compounds analyzed in environmental and quality-control samples collected by the USGS National Water-Quality Assessment Project during 2013 through 2015 for a study of groundwater resources used for drinking-water supply across the United States. Hormone and pharmaceutical results are provided for environmental samples collected at 1,12Datasets and metadata for estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology
This USGS data release contains datasets, metadata, and figures associated with estimating nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology. There are three shapefiles with associated metadata and figures representing the shapefiles: Catchments_GWcontribN.shp: NHDPlus catchment estimates of groundwater contribution of nitraData Release for Metamodeling and Mapping of Nitrate Flux in the Unsaturated Zone and Groundwater, Wisconsin, USA
Widespread nitrate contamination of groundwater in agricultural areas poses a major challenge to sustainable water resources. Efficient analysis of nitrate fluxes across large regions also remains difficult. This study introduces a method of characterizing nitrate transport processes continuously across regional unsaturated zones and groundwater based on surrogate, machine-learning metamodels of aDatasets from Groundwater-Quality Data from the National Water-Quality Assessment Project, January through December 2014 and Select Quality-Control Data from May 2012 through December 2014
Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, whicData from Methane in Aquifers Used for Public Supply in the United States
In 2013 to 2015, 833 public supply wells in 15 Principal aquifers in the United States were sampled to identify which aquifers contained high methane concentrations (greater than 1 mg/L) and determine the geologic, hydrologic, and geochemical conditions associated with high concentrations. This study represents the first national assessment of methane in aquifers used for public supply in the U.S. - Multimedia
- Publications
Below, you’ll find the latest in peer-reviewed journal articles and USGS reports on groundwater water-quality issues.
Tritium as an indicator of modern, mixed, and premodern groundwater age
Categorical classification of groundwater age is often used for the assessment and understanding of groundwater resources. This report presents a tritium-based age classification system for the conterminous United States based on tritium (3H) thresholds that vary in space and time: modern (recharged in 1953 or later), if the measured value is larger than an upper threshold; premodern (recharged prAuthorsBruce D. Lindsey, Bryant C. Jurgens, Kenneth BelitzFilter Total Items: 45Groundwater quality in the Colorado Plateaus aquifers, western United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Colorado Plateaus aquifers constitute one of the important areas being evaluated.AuthorsJames R. Degnan, MaryLynn MusgroveGroundwater quality in selected Stream Valley aquifers, western United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Stream Valley aquifers constitute one of the important aquifer systems being evaluated.AuthorsJames A. KingsburyGroundwater quality in the Edwards-Trinity aquifer system
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Edwards-Trinity aquifer system constitutes one of the important aquifers being evaluated.AuthorsMaryLynn MusgroveGroundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January 2017 through December 2019
Groundwater-quality environmental data were collected from 983 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water Quality Program and are included in this report. The data were collected from six types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-usAuthorsJames A. Kingsbury, Laura M. Bexfield, Terri Arnold, MaryLynn Musgrove, Melinda L. Erickson, James R. Degnan, Anthony J. Tesoriero, Bruce D. Lindsey, Kenneth BelitzThree-dimensional distribution of residence time metrics in the glaciated United States using metamodels trained on general numerical models
Residence time distribution (RTD) is a critically important characteristic of groundwater flow systems; however, it cannot be measured directly. RTD can be inferred from tracer data with analytical models (few parameters) or with numerical models (many parameters). The second approach permits more variation in system properties but is used less frequently than the first because large‐scale numericAuthorsJ. Jeffrey Starn, Leon J. Kauffman, Carl S. Carlson, James E. Reddy, Michael N. FienenThe occurrence and distribution of strontium in U.S. groundwater
Groundwater samples from 32 principal aquifers across the United States (U.S.) provide a broad spatial scope of the occurrence and distribution of strontium (Sr) and are used to assess environments and factors that influence Sr concentration. Strontium is a common trace element in soils, rocks, and water and is ubiquitous in groundwater with detectable concentrations in 99.8% of samples (n=4,824;AuthorsMaryLynn MusgroveMachine learning predictions of pH in the Glacial Aquifer System, Northern USA
A boosted regression tree model was developed to predict pH conditions in three dimensions throughout the glacial aquifer system of the contiguous United States using pH measurements in samples from 18,386 wells and predictor variables that represent aspects of the hydrogeologic setting. Model results indicate that the carbonate content of soils and aquifer materials strongly controls pH and, whenAuthorsPaul Stackelberg, Kenneth Belitz, Craig J. Brown, Melinda L. Erickson, Sarah M. Elliott, Leon J. Kauffman, Katherine Marie Ransom, James E. ReddyGroundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January through December 2016, and previously unpublished data from 2013 to 2015
Environmental groundwater-quality data were collected from 648 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program and are included in this report. Most of the wells (514) were sampled from January through December 2016, and 60 of them were sampled in 2013 and 74 in 2014. The data were collected from seven types of well networAuthorsTerri Arnold, Laura M. Bexfield, MaryLynn Musgrove, Melinda L. Erickson, James A. Kingsbury, James R. Degnan, Anthony J. Tesoriero, Justin T. Kulongoski, Kenneth BelitzFluoride occurrence in United States groundwater
Data from 38,105 wells were used to characterize fluoride (F) occurrence in untreated United States (U.S.) groundwater. For domestic wells (n = 11,032), water from which is generally not purposely fluoridated or monitored for quality, 10.9% of the samples have F concentrations >0.7 mg/L (U.S. Public Health Service recommended optimal F concentration in drinking water for preventing tooth decay) (8AuthorsPeter B. McMahon, Craig J. Brown, Tyler D. Johnson, Kenneth Belitz, Bruce D. LindseyThe relation of geogenic contaminants to groundwater age, aquifer hydrologic position, water type, and redox conditions in Atlantic and Gulf Coastal Plain aquifers, eastern and south-central USA
Groundwater age distributions developed from carbon-14 (14C), tritium (3H), and helium-4 (4He) concentrations, along with aquifer hydrologic position, water type, and redox conditions, were compared to geogenic contaminants of concern (GCOC) from 252 public-supply wells in six Atlantic and Gulf Coastal Plain unconsolidated-sediment aquifers. Concentrations of one or more GCOCs in 168 (67%) wellsAuthorsJames R. Degnan, Bruce D. Lindsey, Joseph Patrick Levitt, Zoltan SzaboGroundwater quality in the Ozark Plateaus aquifer system, central United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Ozark Plateaus aquifer system constitutes one of the important aquifer systems being evaluatAuthorsJames A. KingsburyGroundwater quality in the Biscayne aquifer, Florida
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Biscayne aquifer constitutes one of the important aquifers being evaluated.AuthorsJames A. Kingsbury - Web Tools
Groundwater Quality: Decadal Change
Almost one-half of the U.S. population rely on groundwater for their water supply, and demand for groundwater for public supply, irrigation, and agriculture continues to increase. This mapper shows how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation.
- News
Contaminants present in many parts of the Glacial aquifer system
Are you one of 30 million Americans whose drinking-water supply relies on groundwater from the glacial aquifer system? A new USGS study assesses the quality of untreated groundwater from this critical water resource, which underlies parts of 25 northern U.S. states.
Filter Total Items: 20