Nutrients and Eutrophication (Harmful Algal Blooms, Fish Kills, etc.)
Nutrients and Eutrophication (Harmful Algal Blooms, Fish Kills, etc.)
Filter Total Items: 32
Transboundary Assessments of Water Quality in the Pacific Northwest
In 2019, the USGS began studying the baseline water-quality of selected transboundary rivers in the Pacific Northwest. These studies are designed to characterize current water-quality conditions so as to facilitate future assessments of potential impacts related to upstream mining activities.
SPARROW Mappers
SPARROW mappers are interactive tools that allow the user to explore river streamflow and nutrient and sediment loads and yields and the importance of different sources of contaminants in a particular river basin. Data can be visualized using maps and interactive graphs and tables, and rankings can be shown by state, major watershed, hydrologic unit (HUC), and catchment.
Urban Waters Federal Partnership: Cooperative Matching Funds Projects
The Urban Waters Federal Partnership reconnects urban communities with their waterways by improving coordination among federal agencies, particularly those impacted by pollution or economic distress.
Harmful Algal Bloom (HAB): Cooperative Matching Funds Projects
New projects from coast to coast will advance the research on harmful algal blooms (HABs) in lakes, reservoirs and rivers. The vivid emerald-colored algal blooms are caused by cyanobacteria, which can produce cyanotoxins that threaten human health and aquatic ecosystems and can cause major economic damage.
National Water-Quality Assessment (NAWQA)
Our surface water, groundwater, and aquatic ecosystems are priceless resources, used by people across the Nation for drinking, irrigation, industry, and recreation. The National Water-Quality Assessment (NAWQA) Project is a leading source of scientific data and knowledge for development of science-based policies and management strategies to improve and protect our water resources.
NWQP Research on Harmful Algal Blooms (HABs)
Harmful algal blooms (HABs) are caused by a complex set of physical, chemical, biological, hydrological, and meteorological conditions. Many unanswered questions remain about occurrence, environmental triggers for toxicity, and the ability to predict the timing, duration, and toxicity of HABs.
Nutrients and Eutrophication
Like people, plants need nutrients, but too much of a good thing can be a problem. Nutrients, such as nitrogen and phosphorus, occur naturally, but most of the nutrients in our waterways come from human activities and sources—fertilizers, wastewater, automobile exhaust, animal waste. The USGS investigates the source, transport, and fate of nutrients and their impacts on the world around us.
NWQP Water-Quality Topics
From chloride to corrosivity, from pesticides to PAHs, find the most recent National Water Quality Program (NWQP) science on these topics and effects on surface water, groundwater, and ecology. Informative web pages provide an overview and links to related web pages, publications, maps, news, and data.
Integration of sUAS into Hydrogeophysical Studies: Technology Demonstration and Evaluation
The USGS is evaluating the integration of small unoccupied aircraft systems – sUAS or "drones" – into USGS hydrogeophysical studies. The following projects are part of a Water Resources Mission Area demonstration and evaluation effort in collaboration with USGS Water Science Centers (WSCs) starting in June 2018.
Water Quality in the Nation’s Streams and Rivers – Current Conditions and Long-Term Trends
The Nation's rivers and streams are a priceless resource, but pollution from urban and agricultural areas pose a threat to our water quality. To understand the value of water quality, and to more effectively manage and protect the Nation's water resources, it's critical that we know the current status of water-quality conditions, and how and why those conditions have been changing over time.
Agriculture and the Quality of the Nation's Waters
Intensive studies by the USGS National Water-Quality Assessment (NAWQA) Project in agricultural areas provide insight into how agricultural activities have altered the natural flow of water and the way that agricultural chemicals enter streams and aquifers, and in particular how nutrients affect algal and invertebrate communities in agricultural streams.
Agricultural Contaminants
About 40 percent of the land in the United States is used for agriculture, and agriculture supplies a major part of the our food, feed, and fiber needs. Agricultural chemicals move into and through every component of the hydrologic system, including air, soil, soil water, streams, wetlands, and groundwater.