Jennifer Fike is a Geneticist and Lab Manager at the Fort Collins Science Center.
Science and Products
Filter Total Items: 13
Fort Collins Science Center Labs and Facilities
The Fort Collins Science Center has scientists working in several diverse locations as well as three in house highly specialized laboratories, studying subjects from molecular ecology to brown treesnakes, dendroecology to streamflows, and macroinvertebrate species to Burmese pythons. Our extraordinary scientists work in each of these locations advancing studies in their particluar areas of study...
Molecular Genetics
The use of molecular genetics has become increasingly important in addressing wildlife conservation issues. In the Fort Collins Science Center Molecular Ecology Lab, scientists answer complex questions and conservation issues facing the management of the Nation's fish and wildlife resources. For example, FORT scientists can now locate genes that may contribute to a species' ability to respond to...
Molecular Ecology Lab (MEL)
The Molecular Ecology Laboratory applies genetic and genomic technologies to address a variety of complex questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from...
Conservation Genomics
Conservation genomics is a new field of science that applies novel whole-genome sequencing technology to problems in conservation biology. Rapidly advancing molecular technologies are revolutionizing wildlife ecology, greatly expanding our understanding of wildlife and their interactions with the environment. In the same way that molecular tools such as microsatellites revolutionized wildlife...
Landscape Genetics
Landscape genetics is a recently developed discipline that involves the merger of molecular population genetics and landscape ecology. The goal of this new field of study is to provide information about the interaction between landscape features and microevolutionary processes such as gene flow, genetic drift, and selection allowing for the understanding of processes that generate genetic...
Population Genetics
Population genetics is an area of research that examines the distribution of genetic variation and levels of genetic diversity within and between populations. This information provides insights into the level of connectedness of populations throughout a species’ range and can be used to identify unique populations or those with low levels of genetic diversity.
Molecular Tagging
Molecular tagging is a new application of molecular genetic techniques to traditional mark-recapture methodology designed to address situations where traditional methods fail. In such studies, non-invasively collected samples (such as feces, feathers, or fur) are used as a source of DNA that is then genotyped at multiple loci such that each individual animal can be uniquely identified. Thus, each...
Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons and Other Constrictor Snakes in Florida
Environmental DNA (eDNA) is organismal DNA that can be found in the environment. Environmental DNA originates from cellular material shed by organisms (via skin, excrement, etc.) into aquatic or terrestrial environments that can be sampled and monitored using new molecular methods. Such methodology is important for the early detection of invasive species as well as the detection of rare and...
Investigating Prey of Burmese Pythons using eDNA Methods
Environmental DNA (eDNA) is organismal DNA that can be found in the environment. Environmental DNA originates from cellular material shed by organisms (via skin, excrement, etc.) into aquatic or terrestrial environments that can be sampled and monitored using new molecular methods. Such methodology is important for the early detection of invasive species as well as the detection of rare and...
Developing and Testing Methods for Extracting Environmental DNA from Soil Samples, with Applications to Detection of Brown Treesnakes
Environmental DNA (eDNA) is organismal DNA that can be found in the environment. Environmental DNA originates from cellular material shed by organisms (via skin, excrement, etc.) into aquatic or terrestrial environments that can be sampled and monitored using new molecular methods. Such methodology is important for the early detection of invasive species as well as the detection of rare and...
Taxonomic Uncertainty
Taxonomic uncertainty can be assessed using genetic data, along with other lines of evidence (such as morphological and behavioral characteristics). Such data can be used to identify and assess taxonomic boundaries (species, subspecies, hybrids) and in many cases redefine them. Such delineations are highly relevant for species status determinations (endangered, threatened, or at-risk).
Family Relationships and Mating Systems
Family relationships and mating systems can be investigated and defined using genetic data. This information is potentially important for conservation and management as it may influence effective population size and levels of genetic diversity.
Microsatellite data, boundaries of subpopulation centers, and estimated effective migration for greater sage-grouse collected in western North America between 1992 and 2015 (ver. 2.0, December 2022)
Greater Sage-grouse were sampled for genetic analysis with the goal of quantifying genetic structure and gene flow across the entire species range in the U.S. and Canada. Data presented here consist of two data sets both including genetic data from 15 microsatellite markers. Most samples were collected between 2005 and 2015 (feathers collected non-invasively off the ground) yet some samples were b
Genetic variation in hoary bats (Lasiurus cinereus) assessed from archived samples
Hoary bats are among the bat species most commonly killed by turbine strikes in the midwestern United States. The impact of this mortality on species census size is not understood, due in part to the difficulty of estimating population size for this highly migratory and elusive species. Genetic effective population size (Ne) could provide an index of census population size if other factors affecti
Taxonomic composition of environmental DNA acquired by filtration from the St. Regis River, New York
Environmental DNA (eDNA) surveys have become important tools for monitoring aquatic biodiversity. Barcode sequencing of eDNA generates community profiles that, while potentially biased in both capture and amplification, can nonetheless yield high information content per unit cost. While factors affecting eDNA capture and amplification have been heavily studied, watershed-scale assessments of fish
Sample collection information, single nucleotide polymorphism, and microsatellite data for white-tailed ptarmigan across the species range generated in the Molecular Ecology Lab during 2016
This data release comprises a dataset that contains sample collection information and microsatellite genotypes, and another dataset that contains single nucleotide polymorphism (SNP) genotypes with sample collection information for populations of white-tailed ptarmigan across the species' range. There is also an additional file (accession numbers.xlsx) linking samples to accession numbers in Genba
Metagenetic analysis of stream community composition based on environmental DNA
A survey of environmental DNA was performed in Tunison Creek downstream of the USGS Tunison Aquatic Laboratory. The goal of the survey was to characterize the source ecological community at multiple trophic or taxonomic levels by associating DNA fragments with reference databases. Three taxonomically informative genetic loci were used: the mitochondrial cytochrome oxidase 1 locus, the mitochondria
Indiana Bat fecal DNA study, Indianapolis, IN Summer 2008
The endangered Indiana bat (Myotis sodalis) has declined dramatically and continuing threats have made it necessary to understand population dynamics and life history throughout the year. Specifically, demographic information (e.g., population size, reproductive success, survival) from the summer range where females raise their young in maternity colonies is difficult to estimate precisely using t
Filter Total Items: 26
Genetic analyses provide new insight on the mating strategies of the American Black Swift (Cypseloides niger)
Avian mating strategies play a vital role in the demographic and genetic dynamics of a species and understanding avian reproductive tactics is important to conservation, population management and restoration. Classifications of avian mating strategies have historically been based on direct physical observations and tend to be rigid population-level generalizations that overlook the variations inhe
New strategies for characterizing genetic structure in wide-ranging, continuously distributed species: a Greater Sage-grouse case study
Characterizing genetic structure across a species’ range is relevant for management and conservation as it can be used to define population boundaries and quantify connectivity. Wide-ranging species residing in continuously distributed habitat pose substantial challenges for the characterization of genetic structure as many analytical methods used are less effective when isolation by distance is a
Population genetics reveals bidirectional fish movement across the Continental Divide via an interbasin water transfer
Interbasin water transfers are becoming an increasingly common tool to satisfy municipal and agricultural water demand, but their impacts on movement and gene flow of aquatic organisms are poorly understood. The Grand Ditch is an interbasin water transfer that diverts water from tributaries of the upper Colorado River on the west side of the Continental Divide to the upper Cache la Poudre River on
Historical effective population size of North American hoary bat (Lasiurus cinereus) and challenges to estimating trends in contemporary effective breeding population size from archived samples
BackgroundHoary bats (Lasiurus cinereus) are among the bat species most commonly killed by wind turbine strikes in the midwestern United States. The impact of this mortality on species census size is not understood, due in part to the difficulty of estimating population size for this highly migratory and elusive species. Genetic effective population size (Ne) could provide an index of changing cen
Feral horse space use and genetic characteristics from fecal DNA
Feral horses (Equus ferus caballus) in the western United States are managed by the Bureau of Land Management (BLM) and United States Forest Service in designated areas on public lands with a goal of maintaining populations in balance with multiple uses of the landscape. Small, isolated populations can be at risk of extirpation from stochastic events and deleterious genetic effects resulting from
Composition and distribution of fish environmental DNA in an Adirondack watershed
BackgroundEnvironmental DNA (eDNA) surveys are appealing options for monitoring aquatic biodiversity. While factors affecting eDNA persistence, capture and amplification have been heavily studied, watershed-scale surveys of fish communities and our confidence in such need further exploration.MethodsWe characterized fish eDNA compositions using rapid, low-volume filtering with replicate and control
Characterizing range-wide population divergence in an alpine-endemic bird: A comparison of genetic and genomic approaches
The delineation of intraspecific units that are evolutionarily and demographically distinct is an important step in the development of species-specific management plans. Neutral genetic variation has served as the primary data source for delineating “evolutionarily significant units,” but with recent advances in genomic technology, we now have an unprecedented ability to utilize information about
Genetic mark‐recapture analysis of winter faecal pellets allows estimation of population size in Sage Grouse Centrocercus urophasianus
The Sage Grouse Centrocercus urophasianus is a species of conservation concern throughout its range in western North America. Since the 1950s, the high count of males at leks has been used as an index for monitoring populations. However, the relationship between this lek‐count index and population size is unclear, and its reliability for assessing population trends has been questioned. We used non
Development of microsatellite loci for two New World vultures (Cathartidae)
ObjectiveUse next-generation sequencing to develop microsatellite loci that will provide the variability necessary for studies of genetic diversity and population connectivity of two New World vulture species.ResultsWe characterized 11 microsatellite loci for black vultures (Coragyps atratus) and 14 loci for turkey vultures (Cathartes aura). These microsatellite loci were grouped into 3 multiplex
Post-release breeding of translocated sharp-tailed grouse and an absence of artificial insemination effects
Context: Translocation has become a widely used method to restore wildlife populations following extirpation. For some species, such as lekking grouse, which breed at traditional mating grounds, reproduction is linked to culturally established geographic locations. Cultural centres are lost upon extirpation, making restoration into otherwise rehabilitated habitats especially challenging. The proce
An experimental comparison of composite and grab sampling of stream water for metagenetic analysis of environmental DNA
Use of environmental DNA (eDNA) to assess distributions of aquatic and semi-aquatic macroorganisms is promising, but sampling schemes may need to be tailored to specific objectives. Given the potentially high variance in aquatic eDNA among replicate grab samples, compositing smaller water volumes collected over a period of time may be more effective for some applications. In this study, we compare
Genetic mark–recapture improves estimates of maternity colony size for Indiana bats
Genetic mark–recapture methods are increasingly being used to estimate demographic parameters in species where traditional techniques are problematic or imprecise. The federally endangered Indiana bat Myotis sodalis has declined dramatically and threats such as white-nose syndrome continue to afflict this species. To date, important demographic information for Indiana bats has been difficult to es
Science and Products
- Science
Filter Total Items: 13
Fort Collins Science Center Labs and Facilities
The Fort Collins Science Center has scientists working in several diverse locations as well as three in house highly specialized laboratories, studying subjects from molecular ecology to brown treesnakes, dendroecology to streamflows, and macroinvertebrate species to Burmese pythons. Our extraordinary scientists work in each of these locations advancing studies in their particluar areas of study...Molecular Genetics
The use of molecular genetics has become increasingly important in addressing wildlife conservation issues. In the Fort Collins Science Center Molecular Ecology Lab, scientists answer complex questions and conservation issues facing the management of the Nation's fish and wildlife resources. For example, FORT scientists can now locate genes that may contribute to a species' ability to respond to...Molecular Ecology Lab (MEL)
The Molecular Ecology Laboratory applies genetic and genomic technologies to address a variety of complex questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from...Conservation Genomics
Conservation genomics is a new field of science that applies novel whole-genome sequencing technology to problems in conservation biology. Rapidly advancing molecular technologies are revolutionizing wildlife ecology, greatly expanding our understanding of wildlife and their interactions with the environment. In the same way that molecular tools such as microsatellites revolutionized wildlife...Landscape Genetics
Landscape genetics is a recently developed discipline that involves the merger of molecular population genetics and landscape ecology. The goal of this new field of study is to provide information about the interaction between landscape features and microevolutionary processes such as gene flow, genetic drift, and selection allowing for the understanding of processes that generate genetic...Population Genetics
Population genetics is an area of research that examines the distribution of genetic variation and levels of genetic diversity within and between populations. This information provides insights into the level of connectedness of populations throughout a species’ range and can be used to identify unique populations or those with low levels of genetic diversity.Molecular Tagging
Molecular tagging is a new application of molecular genetic techniques to traditional mark-recapture methodology designed to address situations where traditional methods fail. In such studies, non-invasively collected samples (such as feces, feathers, or fur) are used as a source of DNA that is then genotyped at multiple loci such that each individual animal can be uniquely identified. Thus, each...Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons and Other Constrictor Snakes in Florida
Environmental DNA (eDNA) is organismal DNA that can be found in the environment. Environmental DNA originates from cellular material shed by organisms (via skin, excrement, etc.) into aquatic or terrestrial environments that can be sampled and monitored using new molecular methods. Such methodology is important for the early detection of invasive species as well as the detection of rare and...Investigating Prey of Burmese Pythons using eDNA Methods
Environmental DNA (eDNA) is organismal DNA that can be found in the environment. Environmental DNA originates from cellular material shed by organisms (via skin, excrement, etc.) into aquatic or terrestrial environments that can be sampled and monitored using new molecular methods. Such methodology is important for the early detection of invasive species as well as the detection of rare and...Developing and Testing Methods for Extracting Environmental DNA from Soil Samples, with Applications to Detection of Brown Treesnakes
Environmental DNA (eDNA) is organismal DNA that can be found in the environment. Environmental DNA originates from cellular material shed by organisms (via skin, excrement, etc.) into aquatic or terrestrial environments that can be sampled and monitored using new molecular methods. Such methodology is important for the early detection of invasive species as well as the detection of rare and...Taxonomic Uncertainty
Taxonomic uncertainty can be assessed using genetic data, along with other lines of evidence (such as morphological and behavioral characteristics). Such data can be used to identify and assess taxonomic boundaries (species, subspecies, hybrids) and in many cases redefine them. Such delineations are highly relevant for species status determinations (endangered, threatened, or at-risk).Family Relationships and Mating Systems
Family relationships and mating systems can be investigated and defined using genetic data. This information is potentially important for conservation and management as it may influence effective population size and levels of genetic diversity. - Data
Microsatellite data, boundaries of subpopulation centers, and estimated effective migration for greater sage-grouse collected in western North America between 1992 and 2015 (ver. 2.0, December 2022)
Greater Sage-grouse were sampled for genetic analysis with the goal of quantifying genetic structure and gene flow across the entire species range in the U.S. and Canada. Data presented here consist of two data sets both including genetic data from 15 microsatellite markers. Most samples were collected between 2005 and 2015 (feathers collected non-invasively off the ground) yet some samples were bGenetic variation in hoary bats (Lasiurus cinereus) assessed from archived samples
Hoary bats are among the bat species most commonly killed by turbine strikes in the midwestern United States. The impact of this mortality on species census size is not understood, due in part to the difficulty of estimating population size for this highly migratory and elusive species. Genetic effective population size (Ne) could provide an index of census population size if other factors affectiTaxonomic composition of environmental DNA acquired by filtration from the St. Regis River, New York
Environmental DNA (eDNA) surveys have become important tools for monitoring aquatic biodiversity. Barcode sequencing of eDNA generates community profiles that, while potentially biased in both capture and amplification, can nonetheless yield high information content per unit cost. While factors affecting eDNA capture and amplification have been heavily studied, watershed-scale assessments of fishSample collection information, single nucleotide polymorphism, and microsatellite data for white-tailed ptarmigan across the species range generated in the Molecular Ecology Lab during 2016
This data release comprises a dataset that contains sample collection information and microsatellite genotypes, and another dataset that contains single nucleotide polymorphism (SNP) genotypes with sample collection information for populations of white-tailed ptarmigan across the species' range. There is also an additional file (accession numbers.xlsx) linking samples to accession numbers in GenbaMetagenetic analysis of stream community composition based on environmental DNA
A survey of environmental DNA was performed in Tunison Creek downstream of the USGS Tunison Aquatic Laboratory. The goal of the survey was to characterize the source ecological community at multiple trophic or taxonomic levels by associating DNA fragments with reference databases. Three taxonomically informative genetic loci were used: the mitochondrial cytochrome oxidase 1 locus, the mitochondriaIndiana Bat fecal DNA study, Indianapolis, IN Summer 2008
The endangered Indiana bat (Myotis sodalis) has declined dramatically and continuing threats have made it necessary to understand population dynamics and life history throughout the year. Specifically, demographic information (e.g., population size, reproductive success, survival) from the summer range where females raise their young in maternity colonies is difficult to estimate precisely using t - Multimedia
- Publications
Filter Total Items: 26
Genetic analyses provide new insight on the mating strategies of the American Black Swift (Cypseloides niger)
Avian mating strategies play a vital role in the demographic and genetic dynamics of a species and understanding avian reproductive tactics is important to conservation, population management and restoration. Classifications of avian mating strategies have historically been based on direct physical observations and tend to be rigid population-level generalizations that overlook the variations inheNew strategies for characterizing genetic structure in wide-ranging, continuously distributed species: a Greater Sage-grouse case study
Characterizing genetic structure across a species’ range is relevant for management and conservation as it can be used to define population boundaries and quantify connectivity. Wide-ranging species residing in continuously distributed habitat pose substantial challenges for the characterization of genetic structure as many analytical methods used are less effective when isolation by distance is aPopulation genetics reveals bidirectional fish movement across the Continental Divide via an interbasin water transfer
Interbasin water transfers are becoming an increasingly common tool to satisfy municipal and agricultural water demand, but their impacts on movement and gene flow of aquatic organisms are poorly understood. The Grand Ditch is an interbasin water transfer that diverts water from tributaries of the upper Colorado River on the west side of the Continental Divide to the upper Cache la Poudre River onHistorical effective population size of North American hoary bat (Lasiurus cinereus) and challenges to estimating trends in contemporary effective breeding population size from archived samples
BackgroundHoary bats (Lasiurus cinereus) are among the bat species most commonly killed by wind turbine strikes in the midwestern United States. The impact of this mortality on species census size is not understood, due in part to the difficulty of estimating population size for this highly migratory and elusive species. Genetic effective population size (Ne) could provide an index of changing cenFeral horse space use and genetic characteristics from fecal DNA
Feral horses (Equus ferus caballus) in the western United States are managed by the Bureau of Land Management (BLM) and United States Forest Service in designated areas on public lands with a goal of maintaining populations in balance with multiple uses of the landscape. Small, isolated populations can be at risk of extirpation from stochastic events and deleterious genetic effects resulting fromComposition and distribution of fish environmental DNA in an Adirondack watershed
BackgroundEnvironmental DNA (eDNA) surveys are appealing options for monitoring aquatic biodiversity. While factors affecting eDNA persistence, capture and amplification have been heavily studied, watershed-scale surveys of fish communities and our confidence in such need further exploration.MethodsWe characterized fish eDNA compositions using rapid, low-volume filtering with replicate and controlCharacterizing range-wide population divergence in an alpine-endemic bird: A comparison of genetic and genomic approaches
The delineation of intraspecific units that are evolutionarily and demographically distinct is an important step in the development of species-specific management plans. Neutral genetic variation has served as the primary data source for delineating “evolutionarily significant units,” but with recent advances in genomic technology, we now have an unprecedented ability to utilize information aboutGenetic mark‐recapture analysis of winter faecal pellets allows estimation of population size in Sage Grouse Centrocercus urophasianus
The Sage Grouse Centrocercus urophasianus is a species of conservation concern throughout its range in western North America. Since the 1950s, the high count of males at leks has been used as an index for monitoring populations. However, the relationship between this lek‐count index and population size is unclear, and its reliability for assessing population trends has been questioned. We used nonDevelopment of microsatellite loci for two New World vultures (Cathartidae)
ObjectiveUse next-generation sequencing to develop microsatellite loci that will provide the variability necessary for studies of genetic diversity and population connectivity of two New World vulture species.ResultsWe characterized 11 microsatellite loci for black vultures (Coragyps atratus) and 14 loci for turkey vultures (Cathartes aura). These microsatellite loci were grouped into 3 multiplexPost-release breeding of translocated sharp-tailed grouse and an absence of artificial insemination effects
Context: Translocation has become a widely used method to restore wildlife populations following extirpation. For some species, such as lekking grouse, which breed at traditional mating grounds, reproduction is linked to culturally established geographic locations. Cultural centres are lost upon extirpation, making restoration into otherwise rehabilitated habitats especially challenging. The proceAn experimental comparison of composite and grab sampling of stream water for metagenetic analysis of environmental DNA
Use of environmental DNA (eDNA) to assess distributions of aquatic and semi-aquatic macroorganisms is promising, but sampling schemes may need to be tailored to specific objectives. Given the potentially high variance in aquatic eDNA among replicate grab samples, compositing smaller water volumes collected over a period of time may be more effective for some applications. In this study, we compareGenetic mark–recapture improves estimates of maternity colony size for Indiana bats
Genetic mark–recapture methods are increasingly being used to estimate demographic parameters in species where traditional techniques are problematic or imprecise. The federally endangered Indiana bat Myotis sodalis has declined dramatically and threats such as white-nose syndrome continue to afflict this species. To date, important demographic information for Indiana bats has been difficult to es - News