Kevin Buffington is an ecologist at the Western Ecological Research Center.
EDUCATION
B.S. Biology, 2007, University of Wisconsin- Eau Claire,, Eau Claire, WI.
M.S. Biology, 2010, Idaho State University, Pocatello, ID.
Ph.D. Fisheries and Wildlife, anticipated Mar 2017, Oregon State University, Corvallis, OR
RESEARCH INTERESTS
- Climate change ecology
- Remote Sensing
- Sea-level rise and salt marsh habitats
- Spatial modeling
- Species Distribution Modeling
- Physiological tolerances
- Wildlife biology
Science and Products
Developing a Pacific Mangrove Monitoring Network (PACMAN) in Response to Sea Level Rise
Continued sea-level rise from a changing climate is expected to result in the loss of many coastal mangrove trees, which, will strongly affect human populations on isolated Western Pacific islands as they rely heavily on mangrove forests for food (fish, shrimp, and crabs), building materials, and firewood. Mangroves also protect local communities from tsunamis and cyclones and are important for cl
Wetland Carbon Working Group: Improving Methodologies and Estimates of Carbon and Greenhouse Gas Flux in Wetlands
WARC researchers are working to quantify the impacts of future climate and land use/land cover change on greenhouse gas emissions and reductions.
Sea-level Rise Vulnerability of Mangrove Forests in Micronesia and the Pacific
The USGS and partners are studying how mangrove forests in the Federated States of Micronesia may respond to sea-level rise over the coming century. Their projections will help Micronesian communities plan for the future.
The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards
Ecosystems such as coral reefs and mangroves provide an effective first line of defense against coastal hazards and represent a promising nature-based solution to adapt to sea-level rise. In many areas, coral reefs cause waves to break and lose energy, allowing for sediment to accumulate on the inshore portion of reef flats (i.e. the shallowest, flattest part of a reef) and mangroves to establish.
Webinar: Sea-Level Rise, El Niño, and Storm Effects on Coastal Tidal Marshes
View this webinar to learn how climate change may affect El Niño events and extreme storms on coastal wetlands.
Filter Total Items: 15
Elevation and Mangrove Cover Projections under Sea-Level Rise Scenarios at J.N. Ding Darling National Wildlife Refuge, Sanibel Island, Florida, 2020-2100
Elevation projections from the WARMER-Mangroves model for J N. "Ding" Darling National Wildlife Refuge across a range of sea-level rise scenarios (53, 115, and 183 cm by 2100). The model was calibrated using dated soil cores sampled from the basin hydrologic zone.
These data support the following publication:
Buffington, K.J., Thorne, K.M., Krauss, K.W., Conrad, J.K., Drexler, J.Z., and Zhu, Z.,
Bias-Corrected Topobathymetric Elevation Model for South Florida, 2018
Accurate elevation data in coastal ecosystems are crucial for understanding vulnerability to sea-level rise. Lidar has become increasingly available; however, in tidal wetlands such as mangroves and salt marsh, vertical bias from dense vegetation reduces accuracy of the delivered 'base earth' products. To increase accuracy of elevation models across south Florida, we applied the LEAN technique to
Salt marsh monitoring during water years 2013 to 2019, Humboldt Bay, CA – water levels, surface deposition, elevation change, and carbon storage
This data release includes montorting data collected by the U.S. Geological Survey (USGS) Humboldt Bay Water Quality and Salt Marsh Monitoring Project. The datasets include continuous water levels collected at a 6-minute timestep collected in two study marshes (Mad River and Hookton). Surface deposition, elevation changes and carbon storage (in marsh edge environments) measured in five USGS study
Elevation Survey Across Southwest Florida Coastal Wetlands, 2021
Accurate elevation data in coastal wetlands is crucial for planning for sea-level rise. Elevation surveys were conducted across southwest Florida wetlands to provide ground validation of LiDAR as well as target long-term monitoring stations (surface elevation tables). Surveys were conducted in June 2021 across Ding Darling National Wildlife Refuge, Clam Bay, Rookery Bay National Estuarine Research
Tidal Wetland Elevation Projections for Five San Francisco Bay Delta Regions Using WARMER-2, 2000-2100
Projections of marsh elevation change with WARMER-2 across five regions of the San Francisco Bay Delta (Cache Yolo, South Delta, North Delta, Central Delta, and Suisun). The model was run across a range of initial elevations for each region and for scenarios of sea-level rise (30, 61, 91, 122, 152, 183, 305 cm by 2100), sediment availability (historic, constant, declining, and increase), and with
WARMER-2 Model Inputs and Projections for Three Tidal Wetland Sites Across San Francisco Bay Estuary
Understanding the rates and patterns of tidal wetland elevation changes relative to sea-level is essential for understanding the extent of potential wetland loss over the coming years. Using an enhanced and more flexible modeling framework of an ecosystem model (WARMER-2), we explored sea-level rise (SLR) impacts on wetland elevations and carbon sequestration rates through 2100 by considering plan
Mangrove Elevation and Species' Responses to Sea-level Rise Across Pohnpei, Federated States of Micronesia (ver. 1.1, December 2021)
Future sea-level rise poses a risk to mangrove forests. To better understand potential vulnerability, we developed a new numerical model of soil elevation for mangrove forests. We used the model to generate projections of elevation and mangrove forest composition change under four sea-level rise scenarios through 2100 (37, 52, 67, and 117 cm by 2100). We employed a data-driven modeling approach, u
Pacific Northwest tidal marsh plant biomass from a 2017 greenhouse experiment with flooding and salinity manipulations
The sensitivity of tidal marshes to environmental changes that result from sea-level rise or drought conditions is uncertain. We used a controlled greenhouse experiment and factorial flooding x salinity treatments to explore the differential responses of three tidal marsh plant species. Each species exhibited unique responses, with negative responses to increased salinity and longer flooding, but
Pohnpei, Federated States of Micronesia Mangrove Elevation Survey Data
U.S. Geological Survey (USGS) scientists conducted field work efforts during February 15-23, 2017 and April 10-25, 2019 in the mangrove forests of Pohnpei, Federated States of Micronesia (FSM) with logistical assistance from the Micronesia Conservation Trust (MCT) and field assistance from the Conservation Society of Pohnpei and the Pohnpei Department of Forestry. The field team combined the surve
Field and simulated data to construct hypervolumes of coastal wetland plant states for resilience quantification, Louisiana, USA (2016-2017)
These datasets provide: 1) field-collected biomass and structural attributes for coastal salt marsh in the Port Fourchon area, Louisiana; 2) simulated biomass and structural attributes along flooding gradients using mixed model regression outputs; and 3) resilience metrics calculated using multivariate hypervolumes along with potential environmental covariates of resilience metrics.
LEAN-Corrected Collier County DEM for wetlands
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for wetlands throughout Collier county using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) te
LEAN-Corrected DEM for Suisun Marsh
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for Suisun marsh using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et
Filter Total Items: 29
Phenotypic trait differences between Iris pseudacorus in native and introduced ranges support greater capacity of invasive populations to withstand sea level rise
AimTidal wetlands are greatly impacted by climate change, and by the invasion of alien plant species that are being exposed to salinity changes and longer inundation periods resulting from sea level rise. To explore the capacity for the invasion of Iris pseudacorus to persist with sea level rise, we initiated an intercontinental study along estuarine gradients in the invaded North American range a
Authors
Brenda J. Grewell, Blanca Gallego-Tévar, Gael Bárcenas-Moreno, Christine R. Whitcraft, Karen M. Thorne, Kevin J. Buffington, Jesus M. Castillo
A summary of water-quality and salt marsh monitoring, Humboldt Bay, California
This report summarizes data-collection activities associated with the U.S. Geological Survey Humboldt Bay Water-Quality and Salt Marsh Monitoring Project. This work was undertaken to gain a comprehensive understanding of water-quality conditions, salt marsh accretion processes, marsh-edge erosion, and soil-carbon storage in Humboldt Bay, California. Multiparameter sondes recorded water temperature
Authors
Jennifer A. Curtis, Karen M. Thorne, Chase M. Freeman, Kevin J. Buffington, Judith Z. Drexler
Multi-decadal simulation of marsh topography evolution under sea level rise and episodic sediment loads
Coastal marsh within Mediterranean climate zones is exposed to episodic watershed runoff and sediment loads that occur during storm events. Simulating future marsh accretion under sea level rise calls for attention to: (a) physical processes acting over the time scale of storm events and (b) biophysical processes acting over time scales longer than storm events. Using the upper Newport Bay in Sout
Authors
M W Brand, Kevin J. Buffington, J B Rogers, Karen M. Thorne, E D Stein, B F Sanders
Atmospheric river storm flooding influences tidal marsh elevation building processes
Disturbances are a key component of ecological processes in coastal ecosystems. Investigating factors that affect tidal marsh accretion and elevation change is important, largely due to accelerating sea-level rise and the ecological and economic value of wetlands. Sediment accumulation rates, elevation change, and flooding were examined at five marshes along a riverine-tidal gradient in the northe
Authors
Karen M. Thorne, Scott Jones, Chase M. Freeman, Kevin J. Buffington, Christopher N. Janousek, Glenn R. Guntenspergen
Elevations of mangrove forests of Pohnpei, Micronesia
Mangrove surface elevation is the crux of mangrove vulnerability to sea level rise. Local topography influences critical periods of tidal inundation that govern distributions of mangrove species and dictates future distributions. This study surveyed ground surface elevations of the extensive mangroves of Pohnpei, Federated States of Micronesia, integrating four survey technologies to solve issues
Authors
Joanna C Ellison, Kevin J. Buffington, Karen M. Thorne, Dean B. Gesch, Jeffrey Irwin, Jeffrey J. Danielson
Incorporation of uncertainty to improve projections of tidal wetland elevation and carbon accumulation with sea-level rise
Understanding the rates and patterns of tidal wetland elevation changes relative to sea-level is essential for understanding the extent of potential wetland loss over the coming years. Using an enhanced and more flexible modeling framework of an ecosystem model (WARMER-2), we explored sea-level rise (SLR) impacts on wetland elevations and carbon sequestration rates through 2100 by considering plan
Authors
Kevin J. Buffington, Christopher N. Janousek, Bruce D. Dugger, John C. Callaway, Lisa Schile-Beers, Evyan Borgnis Sloane, Karen M. Thorne
Climate change vulnerability assessment for the California coastal national monument—Trinidad and Point Arena-Stornetta units
Executive SummaryThe California Coastal National Monument protects islets, reefs, and rock outcropping habitats in six onshore units, including the Trinidad and Point Arena-Stornetta Units.The California Coastal National Monument provides crucial habitat for resident and migratory species of seabirds, marine mammals, and invertebrates, which includes several federally listed threatened and endange
Authors
Karen M. Thorne, Chase M. Freeman, Kevin J. Buffington, Susan E.W. De La Cruz
Sea-level rise vulnerability of mangrove forests on the Micronesian Island of Pohnpei
IntroductionThe mangrove forests across the Federated States of Micronesia provide critical resources and contribute to climate resilience. Locally, mangrove forests provide habitat for fish and wildlife, timber, and other cultural resources. Mangrove forests also protect Micronesian communities from tropical cyclones and tsunamis, providing a buffer against powerful waves and winds. Mangrove fore
Authors
Karen M. Thorne, Kevin J. Buffington
Wetlands in intermittently closed estuaries can build elevations to keep pace with sea-level rise
Sea-level rise is a threat to coastal ecosystems, which have important conservation and economic value. While marsh response to sea-level rise has been well characterized for perennially open estuaries, bar-built intermittently-closed estuaries and their sea-level rise response are seldom addressed in the literature – despite being common globally. We seek to advance the conceptual understanding o
Authors
Karen M. Thorne, Kevin J. Buffington, Scott Jones, John L. Largier
Scalability and performance tradeoffs in quantifying relationships between elevation and tidal wetland plant communities
Elevation is a major driver of plant ecology and sediment dynamics in tidal wetlands, so accurate and precise spatial data are essential for assessing wetland vulnerability to sea-level rise and making forecasts. We performed survey-grade elevation and vegetation surveys of the Global Change Research Wetland, a brackish microtidal wetland in the Chesapeake Bay estuary, Maryland (USA), to both inte
Authors
James R. Holmquist, Lisa Schile-Beers, Kevin J. Buffington, Meng Lu, Thomas J Mozdzer, Jefferson Riera, Donald E. Weller, Meghan Williams, J Patrick Megonigal
Mangrove species’ response to sea-level rise across Pohnpei, Federated States of Micronesia
Mangrove forests are likely vulnerable to accelerating sea-level rise; however, we lack the tools necessary to understand their future resilience. On the Pacific island of Pohnpei, Federated States of Micronesia, mangroves are habitat to endangered species and provide critical ecosystem services that support local communities. We developed a generalizable modeling framework for mangroves that acco
Authors
Kevin J. Buffington, Richard A. MacKenzie, Joel A. Carr, Maybeleen Apwong, Ken W. Krauss, Karen M. Thorne
Stress gradients interact with disturbance to reveal alternative states in salt marsh: Multivariate resilience at the landscape scale
Stress gradients influence many ecosystem processes and properties, including ecosystem recovery from and resistance to disturbance. While recent analytical approaches have advanced multivariate metrics of ecosystem resilience that allow quantification of conceptual resilience models and identification of thresholds of state change, these approaches are not often translated to landscape scales.Usi
Authors
Scott Jones, Camille Stagg, Erik S. Yando, W. Ryan James, Kevin J. Buffington, Mark W. Hester
Science and Products
- Science
Developing a Pacific Mangrove Monitoring Network (PACMAN) in Response to Sea Level Rise
Continued sea-level rise from a changing climate is expected to result in the loss of many coastal mangrove trees, which, will strongly affect human populations on isolated Western Pacific islands as they rely heavily on mangrove forests for food (fish, shrimp, and crabs), building materials, and firewood. Mangroves also protect local communities from tsunamis and cyclones and are important for clWetland Carbon Working Group: Improving Methodologies and Estimates of Carbon and Greenhouse Gas Flux in Wetlands
WARC researchers are working to quantify the impacts of future climate and land use/land cover change on greenhouse gas emissions and reductions.Sea-level Rise Vulnerability of Mangrove Forests in Micronesia and the Pacific
The USGS and partners are studying how mangrove forests in the Federated States of Micronesia may respond to sea-level rise over the coming century. Their projections will help Micronesian communities plan for the future.The Impact of Sea-Level Rise on Coral Reef and Mangrove Interactions and the Resulting Coastal Flooding Hazards
Ecosystems such as coral reefs and mangroves provide an effective first line of defense against coastal hazards and represent a promising nature-based solution to adapt to sea-level rise. In many areas, coral reefs cause waves to break and lose energy, allowing for sediment to accumulate on the inshore portion of reef flats (i.e. the shallowest, flattest part of a reef) and mangroves to establish.Webinar: Sea-Level Rise, El Niño, and Storm Effects on Coastal Tidal Marshes
View this webinar to learn how climate change may affect El Niño events and extreme storms on coastal wetlands. - Data
Filter Total Items: 15
Elevation and Mangrove Cover Projections under Sea-Level Rise Scenarios at J.N. Ding Darling National Wildlife Refuge, Sanibel Island, Florida, 2020-2100
Elevation projections from the WARMER-Mangroves model for J N. "Ding" Darling National Wildlife Refuge across a range of sea-level rise scenarios (53, 115, and 183 cm by 2100). The model was calibrated using dated soil cores sampled from the basin hydrologic zone. These data support the following publication: Buffington, K.J., Thorne, K.M., Krauss, K.W., Conrad, J.K., Drexler, J.Z., and Zhu, Z.,Bias-Corrected Topobathymetric Elevation Model for South Florida, 2018
Accurate elevation data in coastal ecosystems are crucial for understanding vulnerability to sea-level rise. Lidar has become increasingly available; however, in tidal wetlands such as mangroves and salt marsh, vertical bias from dense vegetation reduces accuracy of the delivered 'base earth' products. To increase accuracy of elevation models across south Florida, we applied the LEAN technique toSalt marsh monitoring during water years 2013 to 2019, Humboldt Bay, CA – water levels, surface deposition, elevation change, and carbon storage
This data release includes montorting data collected by the U.S. Geological Survey (USGS) Humboldt Bay Water Quality and Salt Marsh Monitoring Project. The datasets include continuous water levels collected at a 6-minute timestep collected in two study marshes (Mad River and Hookton). Surface deposition, elevation changes and carbon storage (in marsh edge environments) measured in five USGS studyElevation Survey Across Southwest Florida Coastal Wetlands, 2021
Accurate elevation data in coastal wetlands is crucial for planning for sea-level rise. Elevation surveys were conducted across southwest Florida wetlands to provide ground validation of LiDAR as well as target long-term monitoring stations (surface elevation tables). Surveys were conducted in June 2021 across Ding Darling National Wildlife Refuge, Clam Bay, Rookery Bay National Estuarine ResearchTidal Wetland Elevation Projections for Five San Francisco Bay Delta Regions Using WARMER-2, 2000-2100
Projections of marsh elevation change with WARMER-2 across five regions of the San Francisco Bay Delta (Cache Yolo, South Delta, North Delta, Central Delta, and Suisun). The model was run across a range of initial elevations for each region and for scenarios of sea-level rise (30, 61, 91, 122, 152, 183, 305 cm by 2100), sediment availability (historic, constant, declining, and increase), and withWARMER-2 Model Inputs and Projections for Three Tidal Wetland Sites Across San Francisco Bay Estuary
Understanding the rates and patterns of tidal wetland elevation changes relative to sea-level is essential for understanding the extent of potential wetland loss over the coming years. Using an enhanced and more flexible modeling framework of an ecosystem model (WARMER-2), we explored sea-level rise (SLR) impacts on wetland elevations and carbon sequestration rates through 2100 by considering planMangrove Elevation and Species' Responses to Sea-level Rise Across Pohnpei, Federated States of Micronesia (ver. 1.1, December 2021)
Future sea-level rise poses a risk to mangrove forests. To better understand potential vulnerability, we developed a new numerical model of soil elevation for mangrove forests. We used the model to generate projections of elevation and mangrove forest composition change under four sea-level rise scenarios through 2100 (37, 52, 67, and 117 cm by 2100). We employed a data-driven modeling approach, uPacific Northwest tidal marsh plant biomass from a 2017 greenhouse experiment with flooding and salinity manipulations
The sensitivity of tidal marshes to environmental changes that result from sea-level rise or drought conditions is uncertain. We used a controlled greenhouse experiment and factorial flooding x salinity treatments to explore the differential responses of three tidal marsh plant species. Each species exhibited unique responses, with negative responses to increased salinity and longer flooding, butPohnpei, Federated States of Micronesia Mangrove Elevation Survey Data
U.S. Geological Survey (USGS) scientists conducted field work efforts during February 15-23, 2017 and April 10-25, 2019 in the mangrove forests of Pohnpei, Federated States of Micronesia (FSM) with logistical assistance from the Micronesia Conservation Trust (MCT) and field assistance from the Conservation Society of Pohnpei and the Pohnpei Department of Forestry. The field team combined the surveField and simulated data to construct hypervolumes of coastal wetland plant states for resilience quantification, Louisiana, USA (2016-2017)
These datasets provide: 1) field-collected biomass and structural attributes for coastal salt marsh in the Port Fourchon area, Louisiana; 2) simulated biomass and structural attributes along flooding gradients using mixed model regression outputs; and 3) resilience metrics calculated using multivariate hypervolumes along with potential environmental covariates of resilience metrics.LEAN-Corrected Collier County DEM for wetlands
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation model (DEM) for wetlands throughout Collier county using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) teLEAN-Corrected DEM for Suisun Marsh
Lidar-derived digital elevation models often contain a vertical bias due to vegetation. In areas with tidal influence the amount of bias can be ecologically significant, for example, by decreasing the expected inundation frequency. We generated a corrected digital elevation mode (DEM) for Suisun marsh using a modification of the Lidar Elevation Adjustment with NDVI (LEAN) technique (Buffington et - Multimedia
- Publications
Filter Total Items: 29
Phenotypic trait differences between Iris pseudacorus in native and introduced ranges support greater capacity of invasive populations to withstand sea level rise
AimTidal wetlands are greatly impacted by climate change, and by the invasion of alien plant species that are being exposed to salinity changes and longer inundation periods resulting from sea level rise. To explore the capacity for the invasion of Iris pseudacorus to persist with sea level rise, we initiated an intercontinental study along estuarine gradients in the invaded North American range aAuthorsBrenda J. Grewell, Blanca Gallego-Tévar, Gael Bárcenas-Moreno, Christine R. Whitcraft, Karen M. Thorne, Kevin J. Buffington, Jesus M. CastilloA summary of water-quality and salt marsh monitoring, Humboldt Bay, California
This report summarizes data-collection activities associated with the U.S. Geological Survey Humboldt Bay Water-Quality and Salt Marsh Monitoring Project. This work was undertaken to gain a comprehensive understanding of water-quality conditions, salt marsh accretion processes, marsh-edge erosion, and soil-carbon storage in Humboldt Bay, California. Multiparameter sondes recorded water temperatureAuthorsJennifer A. Curtis, Karen M. Thorne, Chase M. Freeman, Kevin J. Buffington, Judith Z. DrexlerMulti-decadal simulation of marsh topography evolution under sea level rise and episodic sediment loads
Coastal marsh within Mediterranean climate zones is exposed to episodic watershed runoff and sediment loads that occur during storm events. Simulating future marsh accretion under sea level rise calls for attention to: (a) physical processes acting over the time scale of storm events and (b) biophysical processes acting over time scales longer than storm events. Using the upper Newport Bay in SoutAuthorsM W Brand, Kevin J. Buffington, J B Rogers, Karen M. Thorne, E D Stein, B F SandersAtmospheric river storm flooding influences tidal marsh elevation building processes
Disturbances are a key component of ecological processes in coastal ecosystems. Investigating factors that affect tidal marsh accretion and elevation change is important, largely due to accelerating sea-level rise and the ecological and economic value of wetlands. Sediment accumulation rates, elevation change, and flooding were examined at five marshes along a riverine-tidal gradient in the northeAuthorsKaren M. Thorne, Scott Jones, Chase M. Freeman, Kevin J. Buffington, Christopher N. Janousek, Glenn R. GuntenspergenElevations of mangrove forests of Pohnpei, Micronesia
Mangrove surface elevation is the crux of mangrove vulnerability to sea level rise. Local topography influences critical periods of tidal inundation that govern distributions of mangrove species and dictates future distributions. This study surveyed ground surface elevations of the extensive mangroves of Pohnpei, Federated States of Micronesia, integrating four survey technologies to solve issuesAuthorsJoanna C Ellison, Kevin J. Buffington, Karen M. Thorne, Dean B. Gesch, Jeffrey Irwin, Jeffrey J. DanielsonIncorporation of uncertainty to improve projections of tidal wetland elevation and carbon accumulation with sea-level rise
Understanding the rates and patterns of tidal wetland elevation changes relative to sea-level is essential for understanding the extent of potential wetland loss over the coming years. Using an enhanced and more flexible modeling framework of an ecosystem model (WARMER-2), we explored sea-level rise (SLR) impacts on wetland elevations and carbon sequestration rates through 2100 by considering planAuthorsKevin J. Buffington, Christopher N. Janousek, Bruce D. Dugger, John C. Callaway, Lisa Schile-Beers, Evyan Borgnis Sloane, Karen M. ThorneClimate change vulnerability assessment for the California coastal national monument—Trinidad and Point Arena-Stornetta units
Executive SummaryThe California Coastal National Monument protects islets, reefs, and rock outcropping habitats in six onshore units, including the Trinidad and Point Arena-Stornetta Units.The California Coastal National Monument provides crucial habitat for resident and migratory species of seabirds, marine mammals, and invertebrates, which includes several federally listed threatened and endangeAuthorsKaren M. Thorne, Chase M. Freeman, Kevin J. Buffington, Susan E.W. De La CruzSea-level rise vulnerability of mangrove forests on the Micronesian Island of Pohnpei
IntroductionThe mangrove forests across the Federated States of Micronesia provide critical resources and contribute to climate resilience. Locally, mangrove forests provide habitat for fish and wildlife, timber, and other cultural resources. Mangrove forests also protect Micronesian communities from tropical cyclones and tsunamis, providing a buffer against powerful waves and winds. Mangrove foreAuthorsKaren M. Thorne, Kevin J. BuffingtonWetlands in intermittently closed estuaries can build elevations to keep pace with sea-level rise
Sea-level rise is a threat to coastal ecosystems, which have important conservation and economic value. While marsh response to sea-level rise has been well characterized for perennially open estuaries, bar-built intermittently-closed estuaries and their sea-level rise response are seldom addressed in the literature – despite being common globally. We seek to advance the conceptual understanding oAuthorsKaren M. Thorne, Kevin J. Buffington, Scott Jones, John L. LargierScalability and performance tradeoffs in quantifying relationships between elevation and tidal wetland plant communities
Elevation is a major driver of plant ecology and sediment dynamics in tidal wetlands, so accurate and precise spatial data are essential for assessing wetland vulnerability to sea-level rise and making forecasts. We performed survey-grade elevation and vegetation surveys of the Global Change Research Wetland, a brackish microtidal wetland in the Chesapeake Bay estuary, Maryland (USA), to both inteAuthorsJames R. Holmquist, Lisa Schile-Beers, Kevin J. Buffington, Meng Lu, Thomas J Mozdzer, Jefferson Riera, Donald E. Weller, Meghan Williams, J Patrick MegonigalMangrove species’ response to sea-level rise across Pohnpei, Federated States of Micronesia
Mangrove forests are likely vulnerable to accelerating sea-level rise; however, we lack the tools necessary to understand their future resilience. On the Pacific island of Pohnpei, Federated States of Micronesia, mangroves are habitat to endangered species and provide critical ecosystem services that support local communities. We developed a generalizable modeling framework for mangroves that accoAuthorsKevin J. Buffington, Richard A. MacKenzie, Joel A. Carr, Maybeleen Apwong, Ken W. Krauss, Karen M. ThorneStress gradients interact with disturbance to reveal alternative states in salt marsh: Multivariate resilience at the landscape scale
Stress gradients influence many ecosystem processes and properties, including ecosystem recovery from and resistance to disturbance. While recent analytical approaches have advanced multivariate metrics of ecosystem resilience that allow quantification of conceptual resilience models and identification of thresholds of state change, these approaches are not often translated to landscape scales.UsiAuthorsScott Jones, Camille Stagg, Erik S. Yando, W. Ryan James, Kevin J. Buffington, Mark W. Hester