Skip to main content
U.S. flag

An official website of the United States government

New England Water Science Center Projects

The New England Water Science Center monitors, analyzes, and communicates information on the quality and movement of surface water and groundwater within the states of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. 

Explore our projects to learn more about the scientific investigations we conduct. Use keywords and the available filters to narrow your search scope.

Explore Our Projects

Filter Total Items: 100

Development of Flood Insurance Maps in New England

FEMA has requested USGS expertise in hydraulics, hydrology, and mapping to generate flood insurance maps for New England.
Development of Flood Insurance Maps in New England

Development of Flood Insurance Maps in New England

FEMA has requested USGS expertise in hydraulics, hydrology, and mapping to generate flood insurance maps for New England.
Learn More

Development of Streamflow Record Extension Equations in New Hampshire

Currently, there are 16 designated rivers in New Hampshire in need of daily mean streamflow estimates for managing instream flows. Many of New Hampshire’s Designated Rivers have current and/or historical streamflow data that may be used to extend an existing streamgages streamflow record in time through record extension techniques. Evaluating the feasibility of record extension techniques to...
Development of Streamflow Record Extension Equations in New Hampshire

Development of Streamflow Record Extension Equations in New Hampshire

Currently, there are 16 designated rivers in New Hampshire in need of daily mean streamflow estimates for managing instream flows. Many of New Hampshire’s Designated Rivers have current and/or historical streamflow data that may be used to extend an existing streamgages streamflow record in time through record extension techniques. Evaluating the feasibility of record extension techniques to...
Learn More

Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

The purpose of this work is to better understand the effects of dam removal on local hydraulics, fish passage, and flooding. This study is part of a larger effort to monitor ecological resilience changes at nine Hurricane Sandy coastal resiliency aquatic connectivity restoration projects. It will contribute crucial knowledge that will be used to improve aquatic connectivity system cost...
Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

The purpose of this work is to better understand the effects of dam removal on local hydraulics, fish passage, and flooding. This study is part of a larger effort to monitor ecological resilience changes at nine Hurricane Sandy coastal resiliency aquatic connectivity restoration projects. It will contribute crucial knowledge that will be used to improve aquatic connectivity system cost...
Learn More

The Influence of Climatic changes on Extreme Streamflows in the United States

Hydrologic droughts and floods can have severe impacts on river infrastructure, water supply, and ecosystem functioning.
The Influence of Climatic changes on Extreme Streamflows in the United States

The Influence of Climatic changes on Extreme Streamflows in the United States

Hydrologic droughts and floods can have severe impacts on river infrastructure, water supply, and ecosystem functioning.
Learn More

Development of Regional Regression Equations to Estimate the Magnitude of Peak Flows for Selected Annual-Exceedance Probabilities in Maine

The flood-frequency characteristics for streamgages and regression equations for estimating flood magnitudes have been published.
Development of Regional Regression Equations to Estimate the Magnitude of Peak Flows for Selected Annual-Exceedance Probabilities in Maine

Development of Regional Regression Equations to Estimate the Magnitude of Peak Flows for Selected Annual-Exceedance Probabilities in Maine

The flood-frequency characteristics for streamgages and regression equations for estimating flood magnitudes have been published.
Learn More

Trend Reproduction

As part of the National Water Budget Project, our objective is to quantify how well observed trends are simulated.
Trend Reproduction

Trend Reproduction

As part of the National Water Budget Project, our objective is to quantify how well observed trends are simulated.
Learn More

HBMI PRMS Project

This project will provide a deterministic watershed model of the Meduxnekeag River watershed with a capacity to model water-temperatures capable of simulating future hydrologic and temperature changes based on projected climate estimates.
HBMI PRMS Project

HBMI PRMS Project

This project will provide a deterministic watershed model of the Meduxnekeag River watershed with a capacity to model water-temperatures capable of simulating future hydrologic and temperature changes based on projected climate estimates.
Learn More

EPA National Low Flows

Low streamflow has great ecological importance as it defines the minimum extent (and carrying capacity) of in-stream habitat and affects biota composition and distribution, and species trophic structure.
EPA National Low Flows

EPA National Low Flows

Low streamflow has great ecological importance as it defines the minimum extent (and carrying capacity) of in-stream habitat and affects biota composition and distribution, and species trophic structure.
Learn More

Development of Regional Regression Equations in Connecticut

Knowledge of the magnitude and frequency of floods is needed for the effective and safe design of bridges, culverts, and other structures. This information is also important for flood-plain planning and management. Periodic examination of flood-frequency characteristics is essential to ensure the best estimates of flood magnitudes for a given annual exceedance probabilities (AEP).
Development of Regional Regression Equations in Connecticut

Development of Regional Regression Equations in Connecticut

Knowledge of the magnitude and frequency of floods is needed for the effective and safe design of bridges, culverts, and other structures. This information is also important for flood-plain planning and management. Periodic examination of flood-frequency characteristics is essential to ensure the best estimates of flood magnitudes for a given annual exceedance probabilities (AEP).
Learn More

Nutrient Loads from the Upper Connecticut River Watershed

River-borne nutrients, especially nitrogen, contribute to water-quality degradation in Long Island Sound. The Connecticut River is the largest tributary to the Sound, and quantification of nutrient loads from the three upper States in the watershed, as well as the State of Connecticut, is essential for prioritizing efforts to improve the Sound’s water quality.
Nutrient Loads from the Upper Connecticut River Watershed

Nutrient Loads from the Upper Connecticut River Watershed

River-borne nutrients, especially nitrogen, contribute to water-quality degradation in Long Island Sound. The Connecticut River is the largest tributary to the Sound, and quantification of nutrient loads from the three upper States in the watershed, as well as the State of Connecticut, is essential for prioritizing efforts to improve the Sound’s water quality.
Learn More

SELDM: Stochastic Empirical Loading and Dilution Model - Project page

Note: SELDM is now on version 1.1.1. Please use this version for compatibility with 64-bit Microsoft Office environments.
SELDM: Stochastic Empirical Loading and Dilution Model - Project page

SELDM: Stochastic Empirical Loading and Dilution Model - Project page

Note: SELDM is now on version 1.1.1. Please use this version for compatibility with 64-bit Microsoft Office environments.
Learn More

IJC Lake Champlain and the Richelieu River Project

The record setting floods of 2011 in Lake Champlain Vermont/New York U.S. and the Richelieu River in the province of Quebec Canada prompted the U.S. and Canadian governments to work together to identify how flood forecasting, preparedness and mitigation can be improved in the Lake Champlain-Richelieu River (LCRR) basin.
IJC Lake Champlain and the Richelieu River Project

IJC Lake Champlain and the Richelieu River Project

The record setting floods of 2011 in Lake Champlain Vermont/New York U.S. and the Richelieu River in the province of Quebec Canada prompted the U.S. and Canadian governments to work together to identify how flood forecasting, preparedness and mitigation can be improved in the Lake Champlain-Richelieu River (LCRR) basin.
Learn More

Mapping and Characterizing the Arsenic Hazard in Private Well Water Across the Nation

Study estimates about 2.1 million people using wells high in arsenic: USGS research directly supports federal agencies concerned with public health—specifically, understanding natural hazards in private domestic drinking water and the risk they pose to human health.
Mapping and Characterizing the Arsenic Hazard in Private Well Water Across the Nation

Mapping and Characterizing the Arsenic Hazard in Private Well Water Across the Nation

Study estimates about 2.1 million people using wells high in arsenic: USGS research directly supports federal agencies concerned with public health—specifically, understanding natural hazards in private domestic drinking water and the risk they pose to human health.
Learn More

Stochastic Empirical Loading and Dilution Model (SELDM) Transportation Research Board Presentation

Note: SELDM is now on version 1.0.3 Please use the new version on the software support page here
Stochastic Empirical Loading and Dilution Model (SELDM) Transportation Research Board Presentation

Stochastic Empirical Loading and Dilution Model (SELDM) Transportation Research Board Presentation

Note: SELDM is now on version 1.0.3 Please use the new version on the software support page here
Learn More

National Highway Runoff Water-Quality Data and Methodology Synthesis (NDAMS)

Knowledge of the characteristics of highway runoff (concentrations and loads of constituents and the physical and chemical processes that produce this runoff) is important for decisionmakers, planners, and highway engineers to assess and mitigate possible adverse impacts of highway runoff on the Nation's receiving waters. This project was done by the U.S. Geological Survey (USGS) in cooperation...
National Highway Runoff Water-Quality Data and Methodology Synthesis (NDAMS)

National Highway Runoff Water-Quality Data and Methodology Synthesis (NDAMS)

Knowledge of the characteristics of highway runoff (concentrations and loads of constituents and the physical and chemical processes that produce this runoff) is important for decisionmakers, planners, and highway engineers to assess and mitigate possible adverse impacts of highway runoff on the Nation's receiving waters. This project was done by the U.S. Geological Survey (USGS) in cooperation...
Learn More

FHWA 1990 "Driscoll" Model Pollutant Loadings and Impacts from Highway Stormwater Runoff

More info on the SELDM project web page. Click the link below.
FHWA 1990 "Driscoll" Model Pollutant Loadings and Impacts from Highway Stormwater Runoff

FHWA 1990 "Driscoll" Model Pollutant Loadings and Impacts from Highway Stormwater Runoff

More info on the SELDM project web page. Click the link below.
Learn More
Was this page helpful?