Skip to main content
U.S. flag

An official website of the United States government

Images

Pacific Coastal and Marine Science Center images.

Filter Total Items: 1332
A series of images showing a steep cliff along the coast from two different dates and the change between them.
Mud Creek 2017 May 27-June 13 Erosion View 3
Mud Creek 2017 May 27-June 13 Erosion View 3
Mud Creek 2017 May 27-June 13 Erosion View 3

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

A series of images show the height of the ground and how it changes over 17 days.
Mud Creek landslide "pyramid rock" profile and shoreface erosion
Mud Creek landslide "pyramid rock" profile and shoreface erosion
Mud Creek landslide "pyramid rock" profile and shoreface erosion

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

A series of images showing a steep cliff along the coast from two different dates and the change between them.
Mud Creek 2017 May 27-June 13 Erosion View 1
Mud Creek 2017 May 27-June 13 Erosion View 1
Mud Creek 2017 May 27-June 13 Erosion View 1

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

A series of images showing a steep cliff along the coast from two different dates and the change between them.
Mud Creek 2017 May 27-June 13 Erosion View 2
Mud Creek 2017 May 27-June 13 Erosion View 2
Mud Creek 2017 May 27-June 13 Erosion View 2

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

A series of images takes a tour of the area of a large catastrophic landslide and shows the unstable slope before the event.
Mud Creek topographic point clouds
Mud Creek topographic point clouds
Mud Creek topographic point clouds

Imagery shows topographic point clouds from photos, first from September 11, 2015 courtesy of California Coastal Records Project, second from March 8, 2017 (USGS photo), third from May 19, 2017 (USGS photo), and fourth from May 27, 2017 (USGS photo) 7 days following the catastrophic Highway 1 landslide.

Imagery shows topographic point clouds from photos, first from September 11, 2015 courtesy of California Coastal Records Project, second from March 8, 2017 (USGS photo), third from May 19, 2017 (USGS photo), and fourth from May 27, 2017 (USGS photo) 7 days following the catastrophic Highway 1 landslide.

3D maps created by computer processing of air photos show what the Mud Creek area looked like before and after the landslide
3D maps of air photos show views from before and after the landslide
3D maps of air photos show views from before and after the landslide
3D maps of air photos show views from before and after the landslide

Topographic “point clouds” (or 3D maps) created by computer processing of air photos show what the Mud Creek area looked like on March 8, 2017 (top), May 19 (center), and May 27 (bottom).

View from the sky of a steep mountainous coastline with a massive landslide that's taken out the road.
Mud Creek landslide May 27 2017
Mud Creek landslide May 27 2017
View of a beach from up high on a roof with a pier, gentle waves, lots of people on the sand, amusement park in background.
Santa Cruz Main Beach
Santa Cruz Main Beach
Santa Cruz Main Beach

Still-image from video camera atop the Dream Inn looks eastward over Main Beach and boardwalk in Santa Cruz, CA.

Still-image from video camera atop the Dream Inn looks eastward over Main Beach and boardwalk in Santa Cruz, CA.

Superimposed on beach photo: dense grid of blue dots across sandy beach and over ocean. Ditto 3 lines that cross the shore.
“Pixel instruments” on photo of beach in Santa Cruz, California
“Pixel instruments” on photo of beach in Santa Cruz, California
“Pixel instruments” on photo of beach in Santa Cruz, California

Frame from video of Cowells Beach in Santa Cruz, California, showing “pixel instruments” measured continuously during the video and used to estimate different coastal processes. The blue dots represent an array of pixels used by a computer program called cBathy to estimate seafloor depths (bathymetry).

Frame from video of Cowells Beach in Santa Cruz, California, showing “pixel instruments” measured continuously during the video and used to estimate different coastal processes. The blue dots represent an array of pixels used by a computer program called cBathy to estimate seafloor depths (bathymetry).

Two adjacent poles holding video cameras near top, one control box near bottom, one man holding small tool near control box.
Beach-monitoring video cameras atop hotel in Santa Cruz, California
Beach-monitoring video cameras atop hotel in Santa Cruz, California
Beach-monitoring video cameras atop hotel in Santa Cruz, California

USGS ocean engineer Gerry Hatcher (left) and USGS postdoctoral oceanographer Shawn Harrison make adjustments to a computer controlling two video cameras on the roof of the Dream Inn, a 10-story hotel overlooking Monterey Bay in Santa Cruz, California. One camera looks eastward over Santa Cruz Main Beach and boardwalk, and the other southward over Cowells Beach.

USGS ocean engineer Gerry Hatcher (left) and USGS postdoctoral oceanographer Shawn Harrison make adjustments to a computer controlling two video cameras on the roof of the Dream Inn, a 10-story hotel overlooking Monterey Bay in Santa Cruz, California. One camera looks eastward over Santa Cruz Main Beach and boardwalk, and the other southward over Cowells Beach.

Distant view of the shore from a flat rooftop that is visible at bottom of image.
Time-averaged image from video of beach in Santa Cruz, California
Time-averaged image from video of beach in Santa Cruz, California
Time-averaged image from video of beach in Santa Cruz, California

Time-averaged image, or “timex,” created by averaging the intensity of light recorded at each spot, or “pixel,” during a 10-minute video taken at Santa Cruz, California, on May 6, 2017. Blurred white zones show where waves are breaking. Line between wet and dry sand shows the maximum height on the beach reached by the waves (“runup”).

Time-averaged image, or “timex,” created by averaging the intensity of light recorded at each spot, or “pixel,” during a 10-minute video taken at Santa Cruz, California, on May 6, 2017. Blurred white zones show where waves are breaking. Line between wet and dry sand shows the maximum height on the beach reached by the waves (“runup”).

Image in mostly black and white tones, showing distant view of beach stretching from bottom left to upper right.
Variance image from video of beach in Santa Cruz, California
Variance image from video of beach in Santa Cruz, California
Variance image from video of beach in Santa Cruz, California

“Variance” image produced from video shot at Cowells Beach in Santa Cruz, California, on May 6, 2017. The more the light intensity changes at a given spot, or “pixel,” during the video, the brighter the value assigned to that pixel. Motion tends to produce changes in light intensity. Note bright areas along and beyond the shore where waves were breaking.

“Variance” image produced from video shot at Cowells Beach in Santa Cruz, California, on May 6, 2017. The more the light intensity changes at a given spot, or “pixel,” during the video, the brighter the value assigned to that pixel. Motion tends to produce changes in light intensity. Note bright areas along and beyond the shore where waves were breaking.

Illustration shows how photos over a landslide are used to create a digital model for comparison over time.
Measuring topographic change with 4D photogrammetry
Measuring topographic change with 4D photogrammetry
Measuring topographic change with 4D photogrammetry

Provisional data subject to revision. From the USGS Remote Sensing Coastal Change Project, illustration describes how the USGS measures topographic change with 4D photogrammetry utilizing the techniques of Warrick et al., 2017. A digital terrain model of a coastal cliff is shown with its ground control points.

Provisional data subject to revision. From the USGS Remote Sensing Coastal Change Project, illustration describes how the USGS measures topographic change with 4D photogrammetry utilizing the techniques of Warrick et al., 2017. A digital terrain model of a coastal cliff is shown with its ground control points.

A 1000 milliliter glass beaker with 300 milliliters of silty water sits on the metal surface of a hot plate
Hot plate set-up
Hot plate set-up
Hot plate set-up

After mixing about 20 grams of a sediment sample with distilled water, we add strong hydrogen peroxide to break down or "digest" organic matter that may be in the sample. Organic matter makes clay particles stick together and we need them separate in order to calculate accurate particle size fractions of the sample.

After mixing about 20 grams of a sediment sample with distilled water, we add strong hydrogen peroxide to break down or "digest" organic matter that may be in the sample. Organic matter makes clay particles stick together and we need them separate in order to calculate accurate particle size fractions of the sample.

View from a boat of a man snorkeling in a marshy waterway with thick vegetation along the edge of and in the water.
Brazilian waterweed
Brazilian waterweed
Brazilian waterweed

Tips of Brazilian waterweed (Egeria densa) break the surface at low tide in Lindsey Slough in the northern Sacramento-San Joaquin River Delta. More commonly, this invasive plant is completely submerged.

Tips of Brazilian waterweed (Egeria densa) break the surface at low tide in Lindsey Slough in the northern Sacramento-San Joaquin River Delta. More commonly, this invasive plant is completely submerged.

Men stand on a boat wearing safety gear and they are recovering damaged instrumentation from the water using cables and ropes.
Recovering instrument package from Monterey Canyon
Recovering instrument package from Monterey Canyon
Recovering instrument package from Monterey Canyon

On March 21, 2017, the sediment trap from this instrument package (deployed the previous October into Monterey Canyon) is gone and the mounting frame is mangled, having been exposed to several significant turbidity currents in one deployment. 

On March 21, 2017, the sediment trap from this instrument package (deployed the previous October into Monterey Canyon) is gone and the mounting frame is mangled, having been exposed to several significant turbidity currents in one deployment. 

A woman wearing a lab coat pushes a cart with a tube of sediment through a large metal door.
Refrigerated sample storage
Refrigerated sample storage
Refrigerated sample storage

We take most cores and samples straight from the loading dock into a large walk-in refrigerator (about 780 square feet), kept at the international core curation standard of 4° C plus or minus 2° C. Each core and sample must be labeled with an identifier and metadata, which follows the material through processing and analysis.

We take most cores and samples straight from the loading dock into a large walk-in refrigerator (about 780 square feet), kept at the international core curation standard of 4° C plus or minus 2° C. Each core and sample must be labeled with an identifier and metadata, which follows the material through processing and analysis.

A woman wearing a lab coat and rubber gloves places a long plastic tube on a narrow storage shelving unit.
Storing sediment core D-tubes
Storing sediment core D-tubes
Storing sediment core D-tubes

We slip split cores into a labeled D-tube, and both are stored on specialized core racks in a walk-in sample refrigerator. USGS and non-USGS scientists often use our core and sample archives for new research. Contact the lab manager for access policies and other details.

We slip split cores into a labeled D-tube, and both are stored on specialized core racks in a walk-in sample refrigerator. USGS and non-USGS scientists often use our core and sample archives for new research. Contact the lab manager for access policies and other details.

A person wearing a lab coat and rubber gloves holds clear plastic tube with water running into a cylindrical metal pan.
Sieving sediment
Sieving sediment
Sieving sediment

Washing a sediment sample through two sieves with distilled water lets us measure the fractions of gravel (bigger than 2 millimeters or -1 phi) and sand (2 millimeters to 63 microns, -1 phi to 4 phi). Smaller sediment passes through the sieves into a standard 1-liter graduated cylinder.

Washing a sediment sample through two sieves with distilled water lets us measure the fractions of gravel (bigger than 2 millimeters or -1 phi) and sand (2 millimeters to 63 microns, -1 phi to 4 phi). Smaller sediment passes through the sieves into a standard 1-liter graduated cylinder.

Was this page helpful?