Eric J Ward, Ph.D. (Former Employee)
Science and Products
Filter Total Items: 27
Vegetation loss following vertical drowning of Mississippi River deltaic wetlands leads to faster microbial decomposition and decreases in soil carbon
Wetland ecosystems hold nearly a third of the global soil carbon pool, but as wetlands rapidly disappear the fate of this stored soil carbon is unclear. The aim of this study was to quantify and then link potential rates of microbial decomposition after vertical drowning of vegetated tidal marshes in coastal Louisiana to known drivers of anaerobic decomposition altered by vegetation loss...
Authors
Courtney Creamer, Mark Waldrop, Camille Stagg, Kristen L. Manies, Melissa Millman Baustian, Claudia Laurenzano, Tiong Gim Aw, Monica Haw, Sergio Merino, Donald R. Schoolmaster, Sabrina N. Sevilgen, Rachel Katherine Villani, Eric Ward
Subsurface redox interactions regulate ebullitive methane flux in heterogeneous Mississippi River deltaic wetland
As interfaces connecting terrestrial and ocean ecosystems, coastal wetlands develop temporally and spatially complex redox conditions, which drive uncertainties in greenhouse gas emission as well as the total carbon budget of the coastal ecosystem. To evaluate the role of complex redox reactions in methane emission from coastal wetlands, a coupled reactive-transport model was configured...
Authors
Jiaze Wang, Theresa O'Meara, Sophie LaFond-Hudson, Songjie He, Kanchan Maiti, Eric Ward, Benjamin N. Sulman
Practical guide to measuring wetland carbon pools and fluxes
Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational...
Authors
Sheel Bansal, Irena F. Creed, Brian Tangen, Scott D. Bridgham, Ankur R. Desai, Ken Krauss, Scott C Neubauer, Gregory Noe, Donald O. Rosenberry, Carl C. Trettin, Kimberly Wickland, Scott T. Allen, Ariane Arias-Ortiz, Anna R. Armitage, Dennis Baldocchi, Kakoli Banerjee, David Bastviken, Peter Berg, Matthew J. Bogard, Alex T. Chow, William H. Conner, Christopher Craft, Courtney Creamer, Tonya Delsontro, Jamie Duberstein, Meagan J. Eagle, M. Siobhan Fennessey, Sarah A. Finkelstein, Mathias Goeckede, Sabine Grunwald, Meghan Halibisky, Ellen R. Herbert, Mohammad Jahangir, Olivia Johnson, Miriam C. Jones, Jeffrey Kelleway, Sarah Knox, Kevin D. Kroeger, Kevin Kuehn, David Lobb, Amanda Loder, Shizhou Ma, Damien Maher, Gavin McNicol, Jacob Meier, Beth A. Middleton, Christopher T. Mills, Purbasha Mistry, Abhijith Mitra, Courtney Mobilian, Amanda M. Nahlik, Sue Newman, Jessica O'Connell, Patty Oikawa, Max Post van der Burg, Charles A Schutte, Chanchung Song, Camille Stagg, Jessica Turner, Rodrigo Vargas, Mark Waldrop, Markus Wallin, Zhaohui Aleck Wang, Eric Ward, Debra A. Willard, Stephanie A. Yarwood, Xiaoyan Zhu
By
Ecosystems Mission Area, Water Resources Mission Area, Ecosystems Land Change Science Program, Florence Bascom Geoscience Center, Geology, Minerals, Energy, and Geophysics Science Center, Geosciences and Environmental Change Science Center, Northern Prairie Wildlife Research Center, Wetland and Aquatic Research Center , Woods Hole Coastal and Marine Science Center
Mangrove habitat persistence and carbon vulnerability associated with increased nutrient loading and sea-level rise at Ding Darling National Wildlife Refuge (Sanibel Island, Florida, USA)
J.N. “Ding” Darling National Wildlife Refuge (DDNWR) is located on Sanibel Island along the southwestern coast of Florida, USA. Sanibel Island is heavily developed, but DDNWR provides protection for a large mangrove area that supports biodiversity and recreational opportunity. However, nitrogen (N) and phosphorus (P) eutrophication attributed to agriculture discharge along the...
Authors
Ken Krauss, Jeremy R. Conrad, Jamie A. Duberstein, Eric Ward, Judith Z. Drexler, Kevin Buffington, Karen M. Thorne, Brian W. Benscoter, Haley Miller, Natalie T. Faron, Sergio Merino, Andrew From, Elitsa I. Peneva-Reed, Zhiliang Zhu
Upscaling wetland methane emissions from the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0): Model development, network assessment, and budget comparison
Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years...
Authors
Gavin McNicol, Etienne Fluet-Chouinard, Zutao Ouyang, Sarah Knox, Zhang Zhen, Tuula Aalto, Sheel Bansal, Kuang-Yu Chang, Min Chen, Kyle Delwiche, Sarah Feron, Mathias Goeckede, Jinxun Liu, Avni Malhotra, Joe R. Melton, William Riley, Rodrigo Vargas, Kunxiaojia Yuan, Qing Yang, Qing Zhu, Pavel Alekseychik, Mika Aurela, David P. Billesbach, David I. Campbell, Jiquan Chen, Housen Chu, Ankur Desai, Eugenie Euskirchen, Jordan Goodrich, Timothy Griffis, Manuel Helbig, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, John King, Franziska Koebsch, Randall Kolka, Ken Krauss, Annalea Lohila, Ivan Mammarella, Mats Nilson, Asko Noormets, Walter Oechel, Matthias Peichl, Torsten Sachs, Ayaka Sakabe, Christopher Schulze, Oliver Sonnentag, Ryan C. Sullivan, Eeva-Stiina Tuittila, Masahito Ueyama, Timo Vesala, Eric Ward, Christian Wille, Guan Xhuan Wong, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, Robert B. Jackson
Boreal conifers maintain carbon uptake with warming despite failure to track optimal temperatures
Warming shifts the thermal optimum of net photosynthesis (ToptA) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO2) conditions. It is unclear whether shifts in ToptA of field-grown trees will keep pace with the temperatures predicted for the 21st century under elevated...
Authors
Mirindi E. Dusenge, Jeffery M. Warren, Peter B. Reich, Eric Ward, Bridget K. Murphy, Artur Stefanski, Raimundo Bermudez, Marisol Cruz, David A. McLennan, Anthony W. King, Rebecca A. Montgomery, Paul J. Hanson, Danielle A. Way
Modeling impacts of saltwater intrusion on methane and nitrous oxide emissions in tidal forested wetlands
Emissions of methane (CH4) and nitrous oxide (N2O) from soils to the atmosphere can offset the benefits of carbon sequestration for climate change mitigation. While past study has suggested that both CH4 and N2O emissions from tidal freshwater forested wetlands (TFFW) are generally low, the impacts of coastal droughts and drought-induced saltwater intrusion on CH4 and N2O emissions...
Authors
Hongqing Wang, Zhaohua Dai, Ken Krauss, Carl C. Trettin, Gregory Noe, Andrew J. Burton, Eric Ward
Mangroves provide blue carbon ecological value at a low freshwater cost
“Blue carbon” wetland vegetation has a limited freshwater requirement. One type, mangroves, utilizes less freshwater during transpiration than adjacent terrestrial ecoregions, equating to only 43% (average) to 57% (potential) of evapotranspiration (ET). Here, we demonstrate that comparative consumptive water use by mangrove vegetation is as much as 2905 kL H2O ha−1 year−1 less than...
Authors
Ken Krauss, Catherine E. Lovelock, Luzhen Chen, Uta Berger, Marilyn C. Ball, Ruth Reef, Ronny Peters, Hannah Bowen, Alejandra G. Vovides, Eric Ward, Marie-Christin Wimmler, Joel A. Carr, Pete Bunting, Jamie A. Duberstein
Causality guided machine learning model on wetland CH4 emissions across global wetlands
Wetland CH4 emissions are among the most uncertain components of the global CH4 budget. The complex nature of wetland CH4 processes makes it challenging to identify causal relationships for improving our understanding and predictability of CH4 emissions. In this study, we used the flux measurements of CH4 from eddy covariance towers (30 sites from 4 wetlands types: bog, fen, marsh, and...
Authors
Kunxiaojia Yuan, Qing Zhu, Fa Li, William J. Riley, Margaret Torn, Housen Chu, Gavin McNicol, Mingshu Chen, Sara Knox, Kyle B. Delwiche, Huayi Wu, Dennis Baldocchi, Hongxu Ma, Ankur R. Desai, Jiquan Chen, Torsten Sachs, Masahito Ueyama, Oliver Sonnentag, Manuel Helbig, Eeva-Stiina Tuittila, Gerald Jurasinski, Franziska Koebsch, David I. Campbell, Hans Peter Schmid, Annalea Lohila, Mathias Goeckede, Mats B. Nilsson, Thomas Friborg, Joachim Jansen, Donatella Zona, Eugenie S. Euskirchen, Eric Ward, Gil Bohrer, Zhenong Jin, Licheng Liu, Hiroki Iwata, Jordan P. Goodrich, Robert B. Jackson
A model of the spatiotemporal dynamics of soil carbon following coastal wetland loss applied to a Louisiana salt marsh in the Mississippi River Deltaic Plain
The potential for carbon sequestration in coastal wetlands is high due to protection of carbon (C) in flooded soils. However, excessive flooding can result in the conversion of the vegetated wetland to open water. This transition results in the loss of wetland habitat in addition to the potential loss of soil carbon. Thus, in areas experiencing rapid wetland submergence, such as the...
Authors
Donald R. Schoolmaster, Camille Stagg, Courtney Creamer, Claudia Laurenzano, Eric Ward, Mark Waldrop, Melissa M. Baustian, Tiong Aw, Sergio Merino, Rachel Katherine Villani, Laura Scott
Modeling impacts of drought-induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands
Tidal freshwater forested wetlands (TFFW) provide critical ecosystem services including essential habitat for a variety of wildlife species and significant carbon sinks for atmospheric carbon dioxide. However, large uncertainties remain concerning the impacts of climate change on the magnitude and variability of carbon fluxes and storage across a range of TFFW. In this study, we...
Authors
Hongqing Wang, Zhaohua Dai, Carl C. Trettin, Ken Krauss, Gregory Noe, Andrew J. Burton, Camille Stagg, Eric Ward
Wetlands under global change
Wetlands are among the ecosystem types most threatened by global change, including both climate change and other anthropogenic factors such as sea level rise, urban development, deforestation, agricultural land use, drainage, levees, tidal flow restrictions, pollution, eutrophication, and fires. Wetlands not only store disproportionate amounts of carbon compared to other terrestrial...
Authors
Eric Ward
Developing a Decision Support Tool to Inform Louisiana’s Climate Change Adaptation Strategy
In 2020, Governor Edwards of Louisiana issued two executive orders: establishing the Climate Initiatives Task Force to develop the state’s first ever Climate Action Plan to reach net zero greenhouse gas emissions by 2050 and to enhance coastal resilience in the state. Louisiana’s coastal wetlands and natural lands are of vital importance not just for hurricane protection, health and...
Assessing Environmental Stress in Mature Mangrove Stands: Linkages to Nutrient Loading
WARC Researchers are comparing tree and root growth, soil CO2 flux, and surface elevation change between fertilized and unfertilized mangrove forests to assess the potential impact of increased nutrient loading and to help rate mangrove stand vulnerability.
Wetland Methane Emissions: Functional-type Modeling and Data-driven Parameterization
To better understand the environmental drivers of methane emissions in tidal saltmarsh, tidal freshwater swamp forest, tidal freshwater marsh, and non-tidal freshwater marsh habitats, researchers are collecting observations of CH4 emissions and porewater concentrations at research sites representative of each of these habitats.
Wetland Carbon Working Group: Improving Methodologies and Estimates of Carbon and Greenhouse Gas Flux in Wetlands
WARC researchers are working to quantify the impacts of future climate and land use/land cover change on greenhouse gas emissions and reductions.
Wetland Carbon Cycling: Monitoring and Forecasting in a Changing World
WARC's wetland carbon cycle science team is working to improve model parameterizations and formulations and reduce forecast uncertainty in ecosystem modeling.
Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
To ensure successful restoration of coastal wetlands, WARC researchers will measure carbon cycling processes that indicate ecosystem health and sustainability.
Critical Coastal Habitats: Sustainability, Restoration and Forecasting
USGS WARC scientists are monitoring both the long- and short-term effects of coastal restoration efforts on ecosystem health in coastal habitats of Louisiana’s Barataria Basin.
Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts
Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...
Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
The Science Issue and Relevance: Coastal wetlands are some of the most productive and valuable habitats in the world. Louisiana contains 40% of the United States’ coastal wetlands, which provide critical habitat for waterfowl and fisheries, as well as many other benefits, such as storm surge protection for coastal communities. In terms of ecosystem services, biological resource...
Science to Inform the Management of Mangrove Ecosystems Undergoing Sea Level Rise at Ding Darling National Wildlife Refuge, Sanibel Island, Florida
Mangroves are forested tidal wetlands that occur in tropical, sub-tropical, and warm temperate coastal regions around the world. Mangroves occupy a significant area of coastlines globally and provide important ecosystem services to humans and wildlife. These services include aesthetic value, storm protection, food provisioning, recreation, critical wildlife habitat, and biological carbon...
Plant, soil, and microbial characteristics of marsh collapse in Mississippi River Deltaic wetlands
Site, field, and soil data collected from 14 sites along a chronosequence of wetland submergence on 15 – 17 October 2019 in a Louisiana salt marsh in Barataria Basin, part of the Mississippi River Deltaic Plain, along the northern Gulf of Mexico coast.
Sap flow, leaf water use efficiency, and partial weather station data to support stand water use modeling by nutrient treatment (N, P) for mangroves of Ding Darling NWR, Sanibel Island, Florida (2019-2020)
This study evaluated sap flow of neotropical mangrove species subjected to background nutrient loading, and well as fertilization with either nitrogen or phosphorus, at Ding Darling National Wildlife Refuge (NWR). Data collections were made seasonally to model stand water use by mangrove forests as a metric of ecosystem stress through alteration of water use potential at the stand level...
Modeling impacts of drought-induced salinity intrusion on carbon fluxes and storage in tidal freshwater forested wetlands
A biogeochemistry model was developed to examine plant gross primary productivity (GPP), net primary productivity (NPP), plant respiration, soil respiration, soil organic carbon sequestration rate and storage under scenarios of drought and normal conditions at Tidal Freshwater Forested Wetlands (TFFW) sites along the Waccamaw River and Savannah River in the Southeastern United States.
Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019
This dataset provides the water content, bulk density, carbon concentrations, nitrogen concentrations, and carbon content of all fourteen cores sampled in coastal Louisiana (CRMS 0224) in October of 2019. Each sample is identified by a unique identifier that corresponds to each site by depth increment combination. The pond age range associated with each site is provided. The depth...
Simulated Methane and Nitrous Oxide Emissions under Drought-induced Saltwater Intrusion in Tidal Freshwater Forested Wetlands
This dataset contains the result of simulated daily emissions of methane (CH4) and nitrous oxide (N2O) from the soils in Tidal Freshwater Forested Wetlands (TFFW) along the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) under drought-induced saltwater intrusion using a process-driven biogeochemistry model.
Science and Products
Filter Total Items: 27
Vegetation loss following vertical drowning of Mississippi River deltaic wetlands leads to faster microbial decomposition and decreases in soil carbon
Wetland ecosystems hold nearly a third of the global soil carbon pool, but as wetlands rapidly disappear the fate of this stored soil carbon is unclear. The aim of this study was to quantify and then link potential rates of microbial decomposition after vertical drowning of vegetated tidal marshes in coastal Louisiana to known drivers of anaerobic decomposition altered by vegetation loss...
Authors
Courtney Creamer, Mark Waldrop, Camille Stagg, Kristen L. Manies, Melissa Millman Baustian, Claudia Laurenzano, Tiong Gim Aw, Monica Haw, Sergio Merino, Donald R. Schoolmaster, Sabrina N. Sevilgen, Rachel Katherine Villani, Eric Ward
Subsurface redox interactions regulate ebullitive methane flux in heterogeneous Mississippi River deltaic wetland
As interfaces connecting terrestrial and ocean ecosystems, coastal wetlands develop temporally and spatially complex redox conditions, which drive uncertainties in greenhouse gas emission as well as the total carbon budget of the coastal ecosystem. To evaluate the role of complex redox reactions in methane emission from coastal wetlands, a coupled reactive-transport model was configured...
Authors
Jiaze Wang, Theresa O'Meara, Sophie LaFond-Hudson, Songjie He, Kanchan Maiti, Eric Ward, Benjamin N. Sulman
Practical guide to measuring wetland carbon pools and fluxes
Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational...
Authors
Sheel Bansal, Irena F. Creed, Brian Tangen, Scott D. Bridgham, Ankur R. Desai, Ken Krauss, Scott C Neubauer, Gregory Noe, Donald O. Rosenberry, Carl C. Trettin, Kimberly Wickland, Scott T. Allen, Ariane Arias-Ortiz, Anna R. Armitage, Dennis Baldocchi, Kakoli Banerjee, David Bastviken, Peter Berg, Matthew J. Bogard, Alex T. Chow, William H. Conner, Christopher Craft, Courtney Creamer, Tonya Delsontro, Jamie Duberstein, Meagan J. Eagle, M. Siobhan Fennessey, Sarah A. Finkelstein, Mathias Goeckede, Sabine Grunwald, Meghan Halibisky, Ellen R. Herbert, Mohammad Jahangir, Olivia Johnson, Miriam C. Jones, Jeffrey Kelleway, Sarah Knox, Kevin D. Kroeger, Kevin Kuehn, David Lobb, Amanda Loder, Shizhou Ma, Damien Maher, Gavin McNicol, Jacob Meier, Beth A. Middleton, Christopher T. Mills, Purbasha Mistry, Abhijith Mitra, Courtney Mobilian, Amanda M. Nahlik, Sue Newman, Jessica O'Connell, Patty Oikawa, Max Post van der Burg, Charles A Schutte, Chanchung Song, Camille Stagg, Jessica Turner, Rodrigo Vargas, Mark Waldrop, Markus Wallin, Zhaohui Aleck Wang, Eric Ward, Debra A. Willard, Stephanie A. Yarwood, Xiaoyan Zhu
By
Ecosystems Mission Area, Water Resources Mission Area, Ecosystems Land Change Science Program, Florence Bascom Geoscience Center, Geology, Minerals, Energy, and Geophysics Science Center, Geosciences and Environmental Change Science Center, Northern Prairie Wildlife Research Center, Wetland and Aquatic Research Center , Woods Hole Coastal and Marine Science Center
Mangrove habitat persistence and carbon vulnerability associated with increased nutrient loading and sea-level rise at Ding Darling National Wildlife Refuge (Sanibel Island, Florida, USA)
J.N. “Ding” Darling National Wildlife Refuge (DDNWR) is located on Sanibel Island along the southwestern coast of Florida, USA. Sanibel Island is heavily developed, but DDNWR provides protection for a large mangrove area that supports biodiversity and recreational opportunity. However, nitrogen (N) and phosphorus (P) eutrophication attributed to agriculture discharge along the...
Authors
Ken Krauss, Jeremy R. Conrad, Jamie A. Duberstein, Eric Ward, Judith Z. Drexler, Kevin Buffington, Karen M. Thorne, Brian W. Benscoter, Haley Miller, Natalie T. Faron, Sergio Merino, Andrew From, Elitsa I. Peneva-Reed, Zhiliang Zhu
Upscaling wetland methane emissions from the FLUXNET-CH4 Eddy Covariance Network (UpCH4 v1.0): Model development, network assessment, and budget comparison
Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4 budget. Data-driven upscaling of CH4 fluxes from eddy covariance measurements can provide new and independent bottom-up estimates of wetland CH4 emissions. Here, we develop a six-predictor random forest upscaling model (UpCH4), trained on 119 site-years...
Authors
Gavin McNicol, Etienne Fluet-Chouinard, Zutao Ouyang, Sarah Knox, Zhang Zhen, Tuula Aalto, Sheel Bansal, Kuang-Yu Chang, Min Chen, Kyle Delwiche, Sarah Feron, Mathias Goeckede, Jinxun Liu, Avni Malhotra, Joe R. Melton, William Riley, Rodrigo Vargas, Kunxiaojia Yuan, Qing Yang, Qing Zhu, Pavel Alekseychik, Mika Aurela, David P. Billesbach, David I. Campbell, Jiquan Chen, Housen Chu, Ankur Desai, Eugenie Euskirchen, Jordan Goodrich, Timothy Griffis, Manuel Helbig, Takashi Hirano, Hiroki Iwata, Gerald Jurasinski, John King, Franziska Koebsch, Randall Kolka, Ken Krauss, Annalea Lohila, Ivan Mammarella, Mats Nilson, Asko Noormets, Walter Oechel, Matthias Peichl, Torsten Sachs, Ayaka Sakabe, Christopher Schulze, Oliver Sonnentag, Ryan C. Sullivan, Eeva-Stiina Tuittila, Masahito Ueyama, Timo Vesala, Eric Ward, Christian Wille, Guan Xhuan Wong, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, Robert B. Jackson
Boreal conifers maintain carbon uptake with warming despite failure to track optimal temperatures
Warming shifts the thermal optimum of net photosynthesis (ToptA) to higher temperatures. However, our knowledge of this shift is mainly derived from seedlings grown in greenhouses under ambient atmospheric carbon dioxide (CO2) conditions. It is unclear whether shifts in ToptA of field-grown trees will keep pace with the temperatures predicted for the 21st century under elevated...
Authors
Mirindi E. Dusenge, Jeffery M. Warren, Peter B. Reich, Eric Ward, Bridget K. Murphy, Artur Stefanski, Raimundo Bermudez, Marisol Cruz, David A. McLennan, Anthony W. King, Rebecca A. Montgomery, Paul J. Hanson, Danielle A. Way
Modeling impacts of saltwater intrusion on methane and nitrous oxide emissions in tidal forested wetlands
Emissions of methane (CH4) and nitrous oxide (N2O) from soils to the atmosphere can offset the benefits of carbon sequestration for climate change mitigation. While past study has suggested that both CH4 and N2O emissions from tidal freshwater forested wetlands (TFFW) are generally low, the impacts of coastal droughts and drought-induced saltwater intrusion on CH4 and N2O emissions...
Authors
Hongqing Wang, Zhaohua Dai, Ken Krauss, Carl C. Trettin, Gregory Noe, Andrew J. Burton, Eric Ward
Mangroves provide blue carbon ecological value at a low freshwater cost
“Blue carbon” wetland vegetation has a limited freshwater requirement. One type, mangroves, utilizes less freshwater during transpiration than adjacent terrestrial ecoregions, equating to only 43% (average) to 57% (potential) of evapotranspiration (ET). Here, we demonstrate that comparative consumptive water use by mangrove vegetation is as much as 2905 kL H2O ha−1 year−1 less than...
Authors
Ken Krauss, Catherine E. Lovelock, Luzhen Chen, Uta Berger, Marilyn C. Ball, Ruth Reef, Ronny Peters, Hannah Bowen, Alejandra G. Vovides, Eric Ward, Marie-Christin Wimmler, Joel A. Carr, Pete Bunting, Jamie A. Duberstein
Causality guided machine learning model on wetland CH4 emissions across global wetlands
Wetland CH4 emissions are among the most uncertain components of the global CH4 budget. The complex nature of wetland CH4 processes makes it challenging to identify causal relationships for improving our understanding and predictability of CH4 emissions. In this study, we used the flux measurements of CH4 from eddy covariance towers (30 sites from 4 wetlands types: bog, fen, marsh, and...
Authors
Kunxiaojia Yuan, Qing Zhu, Fa Li, William J. Riley, Margaret Torn, Housen Chu, Gavin McNicol, Mingshu Chen, Sara Knox, Kyle B. Delwiche, Huayi Wu, Dennis Baldocchi, Hongxu Ma, Ankur R. Desai, Jiquan Chen, Torsten Sachs, Masahito Ueyama, Oliver Sonnentag, Manuel Helbig, Eeva-Stiina Tuittila, Gerald Jurasinski, Franziska Koebsch, David I. Campbell, Hans Peter Schmid, Annalea Lohila, Mathias Goeckede, Mats B. Nilsson, Thomas Friborg, Joachim Jansen, Donatella Zona, Eugenie S. Euskirchen, Eric Ward, Gil Bohrer, Zhenong Jin, Licheng Liu, Hiroki Iwata, Jordan P. Goodrich, Robert B. Jackson
A model of the spatiotemporal dynamics of soil carbon following coastal wetland loss applied to a Louisiana salt marsh in the Mississippi River Deltaic Plain
The potential for carbon sequestration in coastal wetlands is high due to protection of carbon (C) in flooded soils. However, excessive flooding can result in the conversion of the vegetated wetland to open water. This transition results in the loss of wetland habitat in addition to the potential loss of soil carbon. Thus, in areas experiencing rapid wetland submergence, such as the...
Authors
Donald R. Schoolmaster, Camille Stagg, Courtney Creamer, Claudia Laurenzano, Eric Ward, Mark Waldrop, Melissa M. Baustian, Tiong Aw, Sergio Merino, Rachel Katherine Villani, Laura Scott
Modeling impacts of drought-induced salinity intrusion on carbon dynamics in tidal freshwater forested wetlands
Tidal freshwater forested wetlands (TFFW) provide critical ecosystem services including essential habitat for a variety of wildlife species and significant carbon sinks for atmospheric carbon dioxide. However, large uncertainties remain concerning the impacts of climate change on the magnitude and variability of carbon fluxes and storage across a range of TFFW. In this study, we...
Authors
Hongqing Wang, Zhaohua Dai, Carl C. Trettin, Ken Krauss, Gregory Noe, Andrew J. Burton, Camille Stagg, Eric Ward
Wetlands under global change
Wetlands are among the ecosystem types most threatened by global change, including both climate change and other anthropogenic factors such as sea level rise, urban development, deforestation, agricultural land use, drainage, levees, tidal flow restrictions, pollution, eutrophication, and fires. Wetlands not only store disproportionate amounts of carbon compared to other terrestrial...
Authors
Eric Ward
Developing a Decision Support Tool to Inform Louisiana’s Climate Change Adaptation Strategy
In 2020, Governor Edwards of Louisiana issued two executive orders: establishing the Climate Initiatives Task Force to develop the state’s first ever Climate Action Plan to reach net zero greenhouse gas emissions by 2050 and to enhance coastal resilience in the state. Louisiana’s coastal wetlands and natural lands are of vital importance not just for hurricane protection, health and...
Assessing Environmental Stress in Mature Mangrove Stands: Linkages to Nutrient Loading
WARC Researchers are comparing tree and root growth, soil CO2 flux, and surface elevation change between fertilized and unfertilized mangrove forests to assess the potential impact of increased nutrient loading and to help rate mangrove stand vulnerability.
Wetland Methane Emissions: Functional-type Modeling and Data-driven Parameterization
To better understand the environmental drivers of methane emissions in tidal saltmarsh, tidal freshwater swamp forest, tidal freshwater marsh, and non-tidal freshwater marsh habitats, researchers are collecting observations of CH4 emissions and porewater concentrations at research sites representative of each of these habitats.
Wetland Carbon Working Group: Improving Methodologies and Estimates of Carbon and Greenhouse Gas Flux in Wetlands
WARC researchers are working to quantify the impacts of future climate and land use/land cover change on greenhouse gas emissions and reductions.
Wetland Carbon Cycling: Monitoring and Forecasting in a Changing World
WARC's wetland carbon cycle science team is working to improve model parameterizations and formulations and reduce forecast uncertainty in ecosystem modeling.
Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
To ensure successful restoration of coastal wetlands, WARC researchers will measure carbon cycling processes that indicate ecosystem health and sustainability.
Critical Coastal Habitats: Sustainability, Restoration and Forecasting
USGS WARC scientists are monitoring both the long- and short-term effects of coastal restoration efforts on ecosystem health in coastal habitats of Louisiana’s Barataria Basin.
Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts
Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...
Understanding Impacts of Sea-Level Rise and Land Management on Critical Coastal Marsh Habitat
The Science Issue and Relevance: Coastal wetlands are some of the most productive and valuable habitats in the world. Louisiana contains 40% of the United States’ coastal wetlands, which provide critical habitat for waterfowl and fisheries, as well as many other benefits, such as storm surge protection for coastal communities. In terms of ecosystem services, biological resource...
Science to Inform the Management of Mangrove Ecosystems Undergoing Sea Level Rise at Ding Darling National Wildlife Refuge, Sanibel Island, Florida
Mangroves are forested tidal wetlands that occur in tropical, sub-tropical, and warm temperate coastal regions around the world. Mangroves occupy a significant area of coastlines globally and provide important ecosystem services to humans and wildlife. These services include aesthetic value, storm protection, food provisioning, recreation, critical wildlife habitat, and biological carbon...
Plant, soil, and microbial characteristics of marsh collapse in Mississippi River Deltaic wetlands
Site, field, and soil data collected from 14 sites along a chronosequence of wetland submergence on 15 – 17 October 2019 in a Louisiana salt marsh in Barataria Basin, part of the Mississippi River Deltaic Plain, along the northern Gulf of Mexico coast.
Sap flow, leaf water use efficiency, and partial weather station data to support stand water use modeling by nutrient treatment (N, P) for mangroves of Ding Darling NWR, Sanibel Island, Florida (2019-2020)
This study evaluated sap flow of neotropical mangrove species subjected to background nutrient loading, and well as fertilization with either nitrogen or phosphorus, at Ding Darling National Wildlife Refuge (NWR). Data collections were made seasonally to model stand water use by mangrove forests as a metric of ecosystem stress through alteration of water use potential at the stand level...
Modeling impacts of drought-induced salinity intrusion on carbon fluxes and storage in tidal freshwater forested wetlands
A biogeochemistry model was developed to examine plant gross primary productivity (GPP), net primary productivity (NPP), plant respiration, soil respiration, soil organic carbon sequestration rate and storage under scenarios of drought and normal conditions at Tidal Freshwater Forested Wetlands (TFFW) sites along the Waccamaw River and Savannah River in the Southeastern United States.
Spatiotemporal dynamics of soil carbon following coastal wetland loss at a Louisiana coastal salt marsh in the Mississippi River Deltaic Plain in 2019
This dataset provides the water content, bulk density, carbon concentrations, nitrogen concentrations, and carbon content of all fourteen cores sampled in coastal Louisiana (CRMS 0224) in October of 2019. Each sample is identified by a unique identifier that corresponds to each site by depth increment combination. The pond age range associated with each site is provided. The depth...
Simulated Methane and Nitrous Oxide Emissions under Drought-induced Saltwater Intrusion in Tidal Freshwater Forested Wetlands
This dataset contains the result of simulated daily emissions of methane (CH4) and nitrous oxide (N2O) from the soils in Tidal Freshwater Forested Wetlands (TFFW) along the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) under drought-induced saltwater intrusion using a process-driven biogeochemistry model.