Skip to main content
U.S. flag

An official website of the United States government

Practical guide to measuring wetland carbon pools and fluxes

November 28, 2023

Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.

Publication Year 2023
Title Practical guide to measuring wetland carbon pools and fluxes
DOI 10.1007/s13157-023-01722-2
Authors Sheel Bansal, Irena F. Creed, Brian Tangen, Scott D. Bridgham, Ankur R. Desai, Ken Krauss, Scott C Neubauer, Gregory B. Noe, Donald O. Rosenberry, Carl C. Trettin, Kimberly Wickland, Scott T. Allen, Ariane Arias-Ortiz, Anna R. Armitage, Dennis Baldocchi, Kakoli Banerjee, David Bastviken, Peter Berg, Matthew J. Bogard, Alex T. Chow, William H. Conner, Christopher Craft, Courtney Creamer, Tonya Delsontro, Jamie Duberstein, Meagan J. Eagle, M. Siobhan Fennessey, Sarah A. Finkelstein, Mathias Goeckede, Sabine Grunwald, Meghan Halibisky, Ellen R. Herbert, Mohammad Jahangir, Olivia Johnson, Miriam C. Jones, Jeffrey Kelleway, Sarah Knox, Kevin D. Kroeger, Kevin Kuehn, David Lobb, Amanda Loder, Shizhou Ma, Damien Maher, Gavin McNicol, Jacob Meier, Beth A. Middleton, Christopher T. Mills, Purbasha Mistry, Abhijith Mitra, Courtney Mobilian, Amanda M. Nahlik, Sue Newman, Jessica O'Connell‬, Patty Oikawa, Max Post van der Burg, Charles A Schutte, Chanchung Song, Camille Stagg, Jessica Turner, Rodrigo Vargas, Mark Waldrop, Markus Wallin, Zhaohui Aleck Wang, Eric Ward, Debra A. Willard, Stephanie A. Yarwood, Xiaoyan Zhu
Publication Type Article
Publication Subtype Journal Article
Series Title Wetlands
Index ID 70250805
Record Source USGS Publications Warehouse
USGS Organization Geology and Geophysics Science Center; Geology, Minerals, Energy, and Geophysics Science Center; Geosciences and Environmental Change Science Center; Northern Prairie Wildlife Research Center; Woods Hole Coastal and Marine Science Center; Wetland and Aquatic Research Center; WMA - Earth System Processes Division; Florence Bascom Geoscience Center