Skip to main content
U.S. flag

An official website of the United States government

Images

Images related to natural hazards.

Filter Total Items: 7266
wildfire temperatures
How Hot Are Wildfires?
How Hot Are Wildfires?
How Hot Are Wildfires?

How hot do wildfires get? 

  • 570 F degrees - TEMPERATURE AT WHICH WOOD WILL BURST INTO FLAMES
  • 2,200 F degrees - TEMPERATURE WILDFIRES COULD REACH IN EXTREME CONDITIONS

How hot do wildfires get? 

  • 570 F degrees - TEMPERATURE AT WHICH WOOD WILL BURST INTO FLAMES
  • 2,200 F degrees - TEMPERATURE WILDFIRES COULD REACH IN EXTREME CONDITIONS
wildfire stats
Wildfire Stats
Wildfire Stats
Wildfire Stats

USGS fire science informs land, water, and emergency management decisions. Each year tens of thousands of wildfires cause billions of dollars of damage. 

USGS fire science informs land, water, and emergency management decisions. Each year tens of thousands of wildfires cause billions of dollars of damage. 

postfire debris flows
Postfire debris flows
Postfire debris flows
Postfire debris flows

Fast-moving, highly destructive debris flows triggered by intense rainfall are one of the most dangerous post-fire hazards. The risk of floods and debris flows after fires increases due to vegetation loss and soil exposure. Cases of sudden and deadly debris flow are well documented along the western United States, particularly in Southern California.

Fast-moving, highly destructive debris flows triggered by intense rainfall are one of the most dangerous post-fire hazards. The risk of floods and debris flows after fires increases due to vegetation loss and soil exposure. Cases of sudden and deadly debris flow are well documented along the western United States, particularly in Southern California.

A scientist is sitting in the lab, surrounded by volcano gas monitoring equipment, talking about his work.
USGS scientist Peter Kelly, recipient of the 2024 Dr. James R. Balsley Jr. Award for Excellence
USGS scientist Peter Kelly, recipient of the 2024 Dr. James R. Balsley Jr. Award for Excellence
USGS scientist Peter Kelly, recipient of the 2024 Dr. James R. Balsley Jr. Award for Excellence

USGS scientist Peter Kelly is recognized for his work to design, optimize, and commercialize Multi-GAS technology for monitoring of geothermal and volcanic gas emanations. Notably, he spent almost a decade designing, engineering, and perfecting a system of geochemical sensors for both portable and semi-permanent remote deployment.

USGS scientist Peter Kelly is recognized for his work to design, optimize, and commercialize Multi-GAS technology for monitoring of geothermal and volcanic gas emanations. Notably, he spent almost a decade designing, engineering, and perfecting a system of geochemical sensors for both portable and semi-permanent remote deployment.

Mount St Helens with a dusting of snow looking south in June 2024
Aerial photo of Mount St. Helens June 2024
Aerial photo of Mount St. Helens June 2024
Aerial photo of Mount St. Helens June 2024

Aerial photo of Mount St. Helens (center), with Mount Hood (in the distance, far left), Spirit Lake (on left with floating log mat), and St. Helens Lake with a little ice cover (lower left). USGS image taken by K. Spicer on June 6, 2024. 

Aerial photo of Mount St. Helens (center), with Mount Hood (in the distance, far left), Spirit Lake (on left with floating log mat), and St. Helens Lake with a little ice cover (lower left). USGS image taken by K. Spicer on June 6, 2024. 

A geologist in a bright orange shirt walks beside a newly-erupted lava flow, which barely reaches the height of their waist
Geologist examines new lava flow from Kīlauea's Southwest Rift Zone eruption, June 4, 2024
Geologist examines new lava flow from Kīlauea's Southwest Rift Zone eruption, June 4, 2024
Geologist examines new lava flow from Kīlauea's Southwest Rift Zone eruption, June 4, 2024

The eruption on Kīlauea's Southwest Rift Zone remained paused on Tuesday, June 4, but Hawaiian Volcano Observatory geologists visited the area to take measurements of the previous day's lava flows. Here, a geologist examines part of the lava flow from fissure 2.

Bright orange lava fountains spew from long cracks in an older lava flow, shrouded in plumes of steam and volcanic gas
Lava fountains from new eruptive fissures southwest of Kīlauea's summit, June 3, 2024
Lava fountains from new eruptive fissures southwest of Kīlauea's summit, June 3, 2024
Lava fountains from new eruptive fissures southwest of Kīlauea's summit, June 3, 2024

Lava fountains from the June 3, 2024 fissure eruption in Kīlauea's Southwest Rift Zone were estimated to have reached as high as 20 meters (66 feet), with an average height of 10 meters (33 feet). 

The shadows of four field scientists stretch out towards a distant rainbow arcing into a gray cloud of volcanic gas
A rainbow appears over the site of Kīlauea's Southwest Rift Zone eruption on June 3, 2024
A rainbow appears over the site of Kīlauea's Southwest Rift Zone eruption on June 3, 2024
A rainbow appears over the site of Kīlauea's Southwest Rift Zone eruption on June 3, 2024

While observing the new fissure eruption in Kīlauea's Southwest Rift Zone, HVO scientists in the field were treated to views of rainbow terminating in the cloud of volcanic gases. USGS photo by Tricia Nadeau (HVO)

Ground cracks spider into the distance on a gravelly black landscape. In the background, bigger cracks emit plumes of gas
Ground cracks near the new eruptive fissures in Kīlauea's Southwest Rift Zone, June 3, 2024
Ground cracks near the new eruptive fissures in Kīlauea's Southwest Rift Zone, June 3, 2024
Ground cracks near the new eruptive fissures in Kīlauea's Southwest Rift Zone, June 3, 2024

Scientists observed cracks in previous eruptive surfaces near the new fissure eruption southwest of Kīlauea's summit on June 3, 2024. These cracks ranged from a few centimeters (inches) to approximately 2 meters (6.6 feet) wide.

A shiny black lava flow is bordered by angular, frothy fragments of glassy rock scattered over a gravelly landscape
Fresh lava spatter litters the ground next to a new lava flow from the Kīlauea Southwest Rift Zone fissure eruption of June 3 2024
Fresh lava spatter litters the ground next to a new lava flow from the Kīlauea Southwest Rift Zone fissure eruption of June 3 2024
Fresh lava spatter litters the ground next to a new lava flow from the Kīlauea Southwest Rift Zone fissure eruption of June 3 2024

Frothy, glassy fragments of lava from the fountains of Kīlauea's June 3 eruption fissures were found scattered around newly-erupted lava flows. These tephra contain valuable geochemical information about the magma which fueled the eruption. USGS image by D. Downs. 

Map showing the location of eruptive fissures and the extent of lava flows in Kilauea's Southwest Rift Zone
June 3, 2024 —Kīlauea Southwest Rift Zone eruption reference map, updated as of 10PM HST
June 3, 2024 —Kīlauea Southwest Rift Zone eruption reference map, updated as of 10PM HST
June 3, 2024 —Kīlauea Southwest Rift Zone eruption reference map, updated as of 10PM HST

A new eruption began along Kīlauea's Southwest Rift Zone on June 3, 2024, and this map depicts activity on the eruption's first day. New lava flows are shown in red, only covering about 88 acres (36 hectares) of ground within relatively short distances of the eruptive fissures.

A distant crack in a field of lava emits glowing orange fountains of molten rock and plumes of white and gray clouds
Lava fountains and an ash plume from Kīlauea's Southwest Rift Zone fissure eruption of June 3
Lava fountains and an ash plume from Kīlauea's Southwest Rift Zone fissure eruption of June 3
Lava fountains and an ash plume from Kīlauea's Southwest Rift Zone fissure eruption of June 3

In this photo taken at about 6 a.m. HST on June 3, both lava fountains (left) and emissions of volcanic ash (right) are visible erupting from the new fissures in Kīlauea's Southwest Rift Zone. The ash is dark gray, while the remainder of the whitish plumes are composed of steam and other volcanic gases. USGS photo by Tricia Nadeau (HVO)

In this photo taken at about 6 a.m. HST on June 3, both lava fountains (left) and emissions of volcanic ash (right) are visible erupting from the new fissures in Kīlauea's Southwest Rift Zone. The ash is dark gray, while the remainder of the whitish plumes are composed of steam and other volcanic gases. USGS photo by Tricia Nadeau (HVO)

A female scientist standing next to a boxy instrument on a tripod, taking measurements of a gas plume in the distance
USGS HVO geochemist measuring gases released from Kīlauea Volcano's Southwest Rift Zone fissure eruption
USGS HVO geochemist measuring gases released from Kīlauea Volcano's Southwest Rift Zone fissure eruption
USGS HVO geochemist measuring gases released from Kīlauea Volcano's Southwest Rift Zone fissure eruption

A field team of HVO geochemists visited the site of Kīlauea's Southwest Rift Zone fissure eruption to measure gases released from the fissures. The team used a Fourier transform infrared (FTIR) spectrometer, an instrument that detects gas compositions on the basis of absorbed infrared light. USGS photo by Tricia Nadeau (HVO)

A field team of HVO geochemists visited the site of Kīlauea's Southwest Rift Zone fissure eruption to measure gases released from the fissures. The team used a Fourier transform infrared (FTIR) spectrometer, an instrument that detects gas compositions on the basis of absorbed infrared light. USGS photo by Tricia Nadeau (HVO)

postfire streamflow
How Streamgages are Used in Postfire Flood Forecasting
How Streamgages are Used in Postfire Flood Forecasting
How Streamgages are Used in Postfire Flood Forecasting

How Streamgages are Used in Postfire Flood Forecasting

Stream data is recorded in real time and posted online.

Stream data include water level, velocity, and turbidity.

During storms, rainfall data is compared to the stream data.

The National Weather Service uses the data to issue flood warnings.

How Streamgages are Used in Postfire Flood Forecasting

Stream data is recorded in real time and posted online.

Stream data include water level, velocity, and turbidity.

During storms, rainfall data is compared to the stream data.

The National Weather Service uses the data to issue flood warnings.

Was this page helpful?