An official website of the United States government
Here's how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
We use remote-sensing technologies—such as aerial photography, satellite imagery, structure-from-motion (SfM) photogrammetry, and lidar (laser-based surveying)—to measure coastal change along U.S. shorelines.
Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to natural...
Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to natural...
Two video cameras atop the Dream Inn hotel in Santa Cruz, California, overlook the coast in northern Monterey Bay. One camera looks eastward over Santa Cruz Main Beach and boardwalk, while the other looks southward over Cowells Beach.
Using Video Imagery to Study Coastal Change: Santa Cruz Beaches
Two video cameras atop the Dream Inn hotel in Santa Cruz, California, overlook the coast in northern Monterey Bay. One camera looks eastward over Santa Cruz Main Beach and boardwalk, while the other looks southward over Cowells Beach.
The objectives of his project are to investigate the vectors and timing of microbiological invasions and the subsequent dispersal of these non-native organisms due to sediment transport. We will attempt to confirm the identification of specific invasives encountered with molecular sequencing, monitor the spread of the invading populations through their recent distribution and the historic...
The objectives of his project are to investigate the vectors and timing of microbiological invasions and the subsequent dispersal of these non-native organisms due to sediment transport. We will attempt to confirm the identification of specific invasives encountered with molecular sequencing, monitor the spread of the invading populations through their recent distribution and the historic...
Objectives: Produce a step-change in understanding of submarine turbidity currents by measuring their two key features (synchronous velocity and concentration profiles) in detail (every 2-to-30 seconds) for the first time, and documenting spatial changes in their flow velocity from source-to-sink for the first time.
Objectives: Produce a step-change in understanding of submarine turbidity currents by measuring their two key features (synchronous velocity and concentration profiles) in detail (every 2-to-30 seconds) for the first time, and documenting spatial changes in their flow velocity from source-to-sink for the first time.
We investigate mechanisms of sediment transport, resuspension dynamics in shoals, wave evolution in the shallows, wave attenuation in marshes, and transport of sediment between mudflats and marshes. We produce data sets for calibration of and comparison with sediment transport models, including wave parameters, suspended sediment concentration, and sediment flux.
Sediment transport between estuarine habitats in San Francisco Bay
We investigate mechanisms of sediment transport, resuspension dynamics in shoals, wave evolution in the shallows, wave attenuation in marshes, and transport of sediment between mudflats and marshes. We produce data sets for calibration of and comparison with sediment transport models, including wave parameters, suspended sediment concentration, and sediment flux.
USGS scientists installed two video cameras atop a windmill tower in Unalakleet, Alaska, pointing westward over Norton Sound, to observe and quantify coastal processes such as wave run-up, development of rip channels, bluff erosion, and movement of sandbars and ice floes.
Using Video Imagery to Study Wave Dynamics: Unalakleet
USGS scientists installed two video cameras atop a windmill tower in Unalakleet, Alaska, pointing westward over Norton Sound, to observe and quantify coastal processes such as wave run-up, development of rip channels, bluff erosion, and movement of sandbars and ice floes.
Two coastal observing video cameras are installed atop a utility pole near the northernmost point of land in the United States, at Nuvuk (Point Barrow), Alaska. The cameras point northwest toward the Arctic Ocean and the boundary between the Chukchi and Beaufort Seas, and will be used to observe and quantify coastal processes such as wave run-up, bluff erosion, movement of sandbars and ice floes...
Using Video Imagery to Study Sediment Transport and Wave Dynamics: Nuvuk (Point Barrow)
Two coastal observing video cameras are installed atop a utility pole near the northernmost point of land in the United States, at Nuvuk (Point Barrow), Alaska. The cameras point northwest toward the Arctic Ocean and the boundary between the Chukchi and Beaufort Seas, and will be used to observe and quantify coastal processes such as wave run-up, bluff erosion, movement of sandbars and ice floes...
Two video cameras overlook the coast at Sunset State Beach in Watsonville, California. Camera 1 looks northwest while Camera 2 looks north. The cameras are part of the Remote Sensing Coastal Change project.
Using Video Imagery to Study Coastal Change: Sunset State Beach
Two video cameras overlook the coast at Sunset State Beach in Watsonville, California. Camera 1 looks northwest while Camera 2 looks north. The cameras are part of the Remote Sensing Coastal Change project.
The U.S. Geological Survey (USGS) Woods Hole Coastal and Marine Science Center in Woods Hole, Massachusetts, is one of three centers serving the mission of the USGS Coastal/Marine Hazards and Resources Program (CMHRP). Since its authorization by Congress in 1962, the CMHRP has served as the primary Federal program for marine geology and physical science research.
Woods Hole Coastal and Marine Science Center 2020 Annual Report
The U.S. Geological Survey (USGS) Woods Hole Coastal and Marine Science Center in Woods Hole, Massachusetts, is one of three centers serving the mission of the USGS Coastal/Marine Hazards and Resources Program (CMHRP). Since its authorization by Congress in 1962, the CMHRP has served as the primary Federal program for marine geology and physical science research.
Coastal erosion, intense storm events and sea-level rise pose threats to coastal communities and infrastructure. Managers and scientists often lack the high-resolution data needed to improve estimates of sediment abundance and movement, shoreline change, and seabed characteristics that influence coastal vulnerability. To address these and other needs the U.S. Geological Survey, in partnership with...
Coastal erosion, intense storm events and sea-level rise pose threats to coastal communities and infrastructure. Managers and scientists often lack the high-resolution data needed to improve estimates of sediment abundance and movement, shoreline change, and seabed characteristics that influence coastal vulnerability. To address these and other needs the U.S. Geological Survey, in partnership with...