The team develops advanced methods to study factors driving algal toxin production, how and where wildlife or humans are exposed to toxins, and ecotoxicology. That information is used to develop decision tools to understand if toxin exposure leads to adverse health effects in order to protect human and wildlife health.
Algal blooms frequently occur in our Nation's water resources and can cause economic, ecologic, and human health concerns. Algal blooms often contain cyanobacteria and other microorganisms, which can produce natural toxins. Yet, the actual health threats posed to the public, pets, livestock, and wildlife by these toxins in water resources used for recreation and drinking water remain poorly understood. Consequently, in order to be protective from potential health risks, rapid decisions are often made by land managers, public utilities and others to limit access to water resources for recreation or drinking water. These decisions are often based largely on a perception of potential risk.
The U.S. Geological Survey’s (USGS) Toxins and Harmful Algal Blooms Research Team works with multiple stakeholders to quantify toxin exposure and effects, identify hazards and vulnerabilities, develop tools to quantify and forecast toxin occurrence and exposure, and estimate socioeconomic impacts. Knowledge gained is used to identify actual versus perceived health risks posed by natural toxins. The team’s approach for understanding health impacts of algal toxins on humans and wildlife is a sequential process where each step informs the next in the laboratory and in the field. This approach involves teams of USGS scientists working at field sites across the United States, and in collaboration with other scientists to address human and wildlife health concerns.
Current Science Activities
- Toxin Exposure and Effects
- Determining the effects of cyanotoxins in fish and birds, including, cyanotoxin induced endocrine disruption, sublethal effects, and immunomodulation effects
- Determining bioaccessibility of cyanotoxins from ambient waters, finished drinking water, and raw and cooked fish in simulated mammalian digestive systems
- Evaluating the potential exposure risk of cyanotoxins in tap waters in the United States
- Dose-dependent animal toxicity studies for cyanotoxins and in relation to health advisory thresholds
- Biomarkers and cellular response to acute and chronic cyanotoxin exposure and potential proactive response measures
- Cyanotoxin and algal blooms related health impacts on reserved Federal lands and U.S. Trust species
- Potential for cyanotoxin aerosolization and human health effects (collaboration with CDC)
- Causes, Control, and Fate of Toxin Production
- Evaluation of commercial personal drinking water purifiers for toxin removal
- Understanding cyanotoxin production and control dynamics
- The response of harmful algae to atmospheric stimuli and implication for ecosystem and human health
- Advancing Methods and Sensors to Support Toxin Studies
- Validation of a method for simultaneously measuring multiple classes of cyanotoxins and algal toxins in surface waters across the freshwater to marine continuum
- Cyanobacteria Assessment Network (CyAN): Detection of cyanobacterial blooms and potential toxin production in lakes and reservoirs
- Polyphasic identification of toxin producing cyanobacteria
- Assessment of physical and chemical properties of cyanotoxins
- Decision Support
- Identification and quantitation of cyanotoxin socioeconomic effects
Below are other science teams and laboratories associated with this project.
Algal and Other Environmental Toxins — Lawrence, Kansas
Satellite Data Used to Estimate and Rank Cyanobacterial Bloom Magnitude in Florida and Ohio Lakes—Developing Tools to Protect Human and Wildlife Health from Cyanotoxin Exposure
Mixtures of Algal Toxins Present Prior to and After Formation of Visible Algal Blooms—Science to Inform the Timing of Algal Toxin Exposure
Understanding Drivers of Cyanotoxin Production in the Lake Okeechobee Waterway
Understanding Associations between Mussel Productivity and Cyanotoxins in Lake Erie
New Method Developed to Quantify Spatial Extent of Cyanobacterial Blooms
Satellite Imagery Used to Measure Algal Bloom Frequency—Steps Toward Understanding Exposure Risk
Cyanobacteria from 2016 Lake Okeechobee Harmful Algal Bloom Photo-Documented
Evaluating Linkages Between Algal Toxins and Human Health
The following are the data releases from this science team’s research activities.
Current use pesticides in larval amphibian tissues, amphibian pathogen and wetland sediment screening data from three northeastern National Wildlife Refuges, 2013-2014
Benthic Algae and Phytoplankton Community and Toxin Data for Selected Stations in the Mississippi Sound, 2019
Liquid Chromatography Triple Quadrupole Mass Spectrometry (LC/MS/MS) analysis of cyanobacteria cultures from Lake Elsinore and Canyon Lake (CA, USA, 2016) for cyanotoxins and algal toxins
Liquid Chromatography Triple Quadrupole Mass Spectrometry (LC/MS/MS) analysis of cyanotoxins and algal toxins in estuary samples collected from California, USA, in 2016-17
Phytoplankton data for samples collected at eleven large river sites throughout the United States, June through September 2017
Microcystin, chlorophyll, and cell-count data for assessing the effect of salinity tolerance on cyanobacteria associated with a harmful algal bloom in Lake Okeechobee, Florida, July 9 to 17, 2017
Velocity test data for assessing the effect of salinity tolerance on cyanobacteria associated with a harmful algal bloom in Lake Okeechobee, Florida, July 10 to 13, 2017
Periphyton (1993-2011) and Water Quality (2014) Data for ET&C Article Entitled Spatial and Temporal Variation in Microcystins Occurrence in Wadeable Streams in the Southeastern USA
Related publications below.
Bottled water contaminant exposures and potential human effects
Review of harmful algal blooms effects on birds with implications for avian wildlife in the Chesapeake Bay region
Tapwater exposures, effects potential, and residential risk management in Northern Plains Nations
Satellites quantify the spatial extent of cyanobacterial blooms across the United States at multiple scales
A validation of satellite derived cyanobacteria detections with state reported events and recreation advisories across U.S. lakes
Site- and individual-level contaminations affect infection prevalence of an emerging infectious disease of amphibians
Phytoplankton community interactions and cyanotoxin mixtures in three recurring surface blooms within one lake
A review of algal toxin exposures on reserved federal lands and among trust species in the United States
Cyanobacteria, cyanotoxin synthetase gene, and cyanotoxin occurrence among selected large river sites of the conterminous United States, 2017–18
Acute oral toxicity and tissue residues of saxitoxin in the mallard (Anas platyrhynchos)
Satellites for long-term monitoring of inland U.S. lakes: The MERIS time series and application for chlorophyll-a
Assessing cyanobacterial frequency and abundance at surface waters near drinking water intakes across the United States
Below are news stories associated with this project.
- Overview
The team develops advanced methods to study factors driving algal toxin production, how and where wildlife or humans are exposed to toxins, and ecotoxicology. That information is used to develop decision tools to understand if toxin exposure leads to adverse health effects in order to protect human and wildlife health.
Cyanobacterial blooms, such as the one shown that occurred in 2016 on Lake Okeechobee, Florida, can release toxins. (Credit: Nicholas Aumen, US Geological Survey. Public domain.) Algal blooms frequently occur in our Nation's water resources and can cause economic, ecologic, and human health concerns. Algal blooms often contain cyanobacteria and other microorganisms, which can produce natural toxins. Yet, the actual health threats posed to the public, pets, livestock, and wildlife by these toxins in water resources used for recreation and drinking water remain poorly understood. Consequently, in order to be protective from potential health risks, rapid decisions are often made by land managers, public utilities and others to limit access to water resources for recreation or drinking water. These decisions are often based largely on a perception of potential risk.
The U.S. Geological Survey’s (USGS) Toxins and Harmful Algal Blooms Research Team works with multiple stakeholders to quantify toxin exposure and effects, identify hazards and vulnerabilities, develop tools to quantify and forecast toxin occurrence and exposure, and estimate socioeconomic impacts. Knowledge gained is used to identify actual versus perceived health risks posed by natural toxins. The team’s approach for understanding health impacts of algal toxins on humans and wildlife is a sequential process where each step informs the next in the laboratory and in the field. This approach involves teams of USGS scientists working at field sites across the United States, and in collaboration with other scientists to address human and wildlife health concerns.
Current Science Activities
- Toxin Exposure and Effects
- Determining the effects of cyanotoxins in fish and birds, including, cyanotoxin induced endocrine disruption, sublethal effects, and immunomodulation effects
- Determining bioaccessibility of cyanotoxins from ambient waters, finished drinking water, and raw and cooked fish in simulated mammalian digestive systems
- Evaluating the potential exposure risk of cyanotoxins in tap waters in the United States
- Dose-dependent animal toxicity studies for cyanotoxins and in relation to health advisory thresholds
- Biomarkers and cellular response to acute and chronic cyanotoxin exposure and potential proactive response measures
- Cyanotoxin and algal blooms related health impacts on reserved Federal lands and U.S. Trust species
- Potential for cyanotoxin aerosolization and human health effects (collaboration with CDC)
- Causes, Control, and Fate of Toxin Production
- Evaluation of commercial personal drinking water purifiers for toxin removal
- Understanding cyanotoxin production and control dynamics
- The response of harmful algae to atmospheric stimuli and implication for ecosystem and human health
- Advancing Methods and Sensors to Support Toxin Studies
- Validation of a method for simultaneously measuring multiple classes of cyanotoxins and algal toxins in surface waters across the freshwater to marine continuum
- Cyanobacteria Assessment Network (CyAN): Detection of cyanobacterial blooms and potential toxin production in lakes and reservoirs
- Polyphasic identification of toxin producing cyanobacteria
- Assessment of physical and chemical properties of cyanotoxins
- Decision Support
- Identification and quantitation of cyanotoxin socioeconomic effects
- Toxin Exposure and Effects
- Science
Below are other science teams and laboratories associated with this project.
Algal and Other Environmental Toxins — Lawrence, Kansas
About the Laboratory The Environmental Health Program collaborates with scientists at the Organic Geochemistry Research Laboratory (OGRL) in Lawrence, Kansas, to develop and employ targeted and non-targeted analytical methods for identification and quantitation of known and understudied algal/cyanobacterial toxins. The laboratory contructed in 2019 is a 2,500 square foot modern laboratory facility...Satellite Data Used to Estimate and Rank Cyanobacterial Bloom Magnitude in Florida and Ohio Lakes—Developing Tools to Protect Human and Wildlife Health from Cyanotoxin Exposure
Cyanobacterial bloom magnitude during 2003–11 was quantified and ranked in Florida and Ohio lakes with a newly developed modelling tool that allows for the use of multiple satellite data sources and user-defined thresholds. This tool was designed to identify the magnitude of algal blooms, but one metric alone cannot adequately represent the severity of a bloom of interest in terms of toxicity. The...Mixtures of Algal Toxins Present Prior to and After Formation of Visible Algal Blooms—Science to Inform the Timing of Algal Toxin Exposure
Cyanobacteria with toxin-producing potential, genes indicating an ability for toxin synthesis, or cyanotoxins were present before and after formation of a visible algal bloom in Kabetogama Lake, a popular recreation area in Voyageurs National Park that lies along the border of Minnesota and Canada. The temporal patterns observed in this study indicate that sampling only when there is a visible...Understanding Drivers of Cyanotoxin Production in the Lake Okeechobee Waterway
The U.S. Geological Survey (USGS) and other researchers combined field and laboratory approaches in two studies to understand the factors that drive cyanobacterial bloom development and associated cyanotoxin production in Lake Okeechobee, the St. Lucie River and Estuary, and the Indian River Lagoon in response to the large-scale Lake Okeechobee cyanobacteria bloom in 2016.Understanding Associations between Mussel Productivity and Cyanotoxins in Lake Erie
Study findings indicate that cyanobacteria and cyanotoxins were not associated with mussel mortality at the concentrations present in Lake Erie during a recent study (2013-15), but mussel growth was lower at sites with greater microcystin concentrations.New Method Developed to Quantify Spatial Extent of Cyanobacterial Blooms
This study provides a method for quantifying changes in the spatial extent of cyanobacterial blooms at local and regional scales using remotely sensed data to determine if bloom occurrence and size are increasing or decreasing for inland water resources.Satellite Imagery Used to Measure Algal Bloom Frequency—Steps Toward Understanding Exposure Risk
Study explores the utility and limitations of currently available remotely sensed satellite data for identifying the frequency of algal blooms in the Nation's lakes and reservoirs. This information provides a first step toward the goal of understanding exposure risk to protect the health of humans, pets, livestock, and wildlife.Cyanobacteria from 2016 Lake Okeechobee Harmful Algal Bloom Photo-Documented
New report provides photographic documentation and identification of the cyanobacteria present in Lake Okeechobee, the Caloosahatchee River, and St. Lucie Canal during an extensive algal bloom in 2016.Evaluating Linkages Between Algal Toxins and Human Health
The amino acid β-methylamino-L-alanine (BMAA) is produced by cyanobacteria and has been suggested by human health researchers as a causal factor for degenerative neurological diseases such as Amyotrophic Lateral Sclerosis (ALS), Parkinsonism, and dementia. An objective review concluded that this hypothesis is not supported by existing data. - Data
The following are the data releases from this science team’s research activities.
Current use pesticides in larval amphibian tissues, amphibian pathogen and wetland sediment screening data from three northeastern National Wildlife Refuges, 2013-2014
The data include concentrations of current use pesticides in tissues of larval wood frog (Lithobates sylvaticus) and spotted salamander (Ambystoma maculatum) and the presence of ranavirus in wood frogs and spotted salamanders from three northeastern National Wildlife Refuges sampled in 2013 and 2014. The data also include estrogenicity, protein phosphatase 2A inhibition and a suite of 15 major andBenthic Algae and Phytoplankton Community and Toxin Data for Selected Stations in the Mississippi Sound, 2019
The Bonnet Carré Spillway (BCS), located about 28 miles northwest of New Orleans, was constructed by the US Army Corp of Engineers in the early 1930s as part of an integrated flood-control system for the lower Mississippi River (MR). The BCS control structure consists of 350 individual bays that can be opened to divert water from the river to Lake Pontchartrain to relieve pressure on downstream leLiquid Chromatography Triple Quadrupole Mass Spectrometry (LC/MS/MS) analysis of cyanobacteria cultures from Lake Elsinore and Canyon Lake (CA, USA, 2016) for cyanotoxins and algal toxins
Cyanobacteria are common in inland water bodies. Many strains are known to produce potent toxins (cyanotoxins) which can impact human and animal health in sufficient concentrations. Lake Elsinore and Canyon Lake are two impaired lakes in California with frequent cyanobacteria blooms that are not monitored for toxin production. These data document the liquid chromatography triple quadrupole mass spLiquid Chromatography Triple Quadrupole Mass Spectrometry (LC/MS/MS) analysis of cyanotoxins and algal toxins in estuary samples collected from California, USA, in 2016-17
Cyanobacteria are primary producers present in many water bodies, certain types of which may produce potent toxins (known as cyanotoxins). They are known to impact human and animal health when exposed through recreational activities, consumption, and inhalation. In an effort to understand the presence of toxin-producing cyanobacteria in California water bodies, cyanobacteria samples were collectedPhytoplankton data for samples collected at eleven large river sites throughout the United States, June through September 2017
This U.S. Geological Survey (USGS) Data Release provides phytoplankton data for samples collected from eleven large river sites throughout the United States, from June through September 2017. All data are reported as raw calculated values and are not rounded to USGS significant figures. The dataset includes all routine and quality assurance/quality control samples collected as part of a National WMicrocystin, chlorophyll, and cell-count data for assessing the effect of salinity tolerance on cyanobacteria associated with a harmful algal bloom in Lake Okeechobee, Florida, July 9 to 17, 2017
This U.S. Geological Survey (USGS) Data Release provides microcystin, chlorophyll, and cell-count data for assessing the effect of salinity tolerance on cyanobacteria associated with a harmful algal bloom in Lake Okeechobee, Florida. All data are reported as raw measured values and are not rounded to USGS significant figures. Water and algal bloom material were collected from Lake Okeechobee, FlorVelocity test data for assessing the effect of salinity tolerance on cyanobacteria associated with a harmful algal bloom in Lake Okeechobee, Florida, July 10 to 13, 2017
This U.S. Geological Survey (USGS) Data Release provides velocity test data for assessing the effect of salinity tolerance on cyanobacteria associated with a harmful algal bloom in Lake Okeechobee, Florida, July 10 to 13, 2017. All data are reported as raw measured values and are not rounded to USGS significant figures. Water and algal bloom material were collected from Lake Okeechobee, Florida onPeriphyton (1993-2011) and Water Quality (2014) Data for ET&C Article Entitled Spatial and Temporal Variation in Microcystins Occurrence in Wadeable Streams in the Southeastern USA
Spatial reconnaissance of fluvial microcystins (MC) concentrations and select water-quality parameters, including nutrients and periphyton biomass, in 75 wadeable streams in the Piedmont region of the southeastern USA during 2014. Data set includes only those data specifically discussed in the associated journal article: Loftin, K.A., Clark, J.M., Journey, C.A., Kolpin, D.W., Van Metre, P.C., - Publications
Related publications below.
Filter Total Items: 70Bottled water contaminant exposures and potential human effects
Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/micrAuthorsPaul Bradley, Kristin Romanok, Kelly Smalling, Michael J. Focazio, Nicola Evans, Suzanne C. Fitzpatrick, Carrie E Givens, Stephanie Gordon, James L. Gray, Emily M. Green, Dale W. Griffin, Michelle Hladik, Leslie K. Kanagy, John T. Lisle, Keith Loftin, R. Blaine McCleskey, Elizabeth Medlock-Kakaley, Ana Navas-Acien, David A. Roth, Paul F. South, Christopher P. WeisReview of harmful algal blooms effects on birds with implications for avian wildlife in the Chesapeake Bay region
The Chesapeake Bay, along the mid-Atlantic coast of North America, is the largest estuary in the United States and provides critical habitat for wildlife. In contrast to point and non-point source release of pesticides, metals, and industrial, personal care and household use chemicals on biota in this watershed, there has only been scant attention to potential exposure and effects of algal toxinsAuthorsBarnett A. Rattner, Catherine E. Wazniak, Julia S. Lankton, Peter C. McGowan, Serguei Vyacheslavovich Drovetski, Todd A. EgertonTapwater exposures, effects potential, and residential risk management in Northern Plains Nations
In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interveAuthorsPaul Bradley, Kristin Romanok, Kelly Smalling, Michael J. Focazio, Robert Charboneau, Christine Marie George, Ana Navas-Acien, Marcia O'Leary, Reno Red Cloud, Tracy Zacher, Sara Breitmeyer, Mary C. Cardon, Christa K. Cuny, Guthrie Ducheneaux, Kendra Enright, Nicola Evans, James L. Gray, David E. Harvey, Michelle Hladik, Leslie K. Kanagy, Keith Loftin, R. Blaine McCleskey, Elizabeth Medlock-Kakaley, Shannon M. Meppelink, Joshua F. Valder, Christopher P. WeisSatellites quantify the spatial extent of cyanobacterial blooms across the United States at multiple scales
Previous studies indicate that cyanobacterial harmful algal bloom (cyanoHAB) frequency, extent, and magnitude have increased globally over the past few decades. However, little quantitative capability is available to assess these metrics of cyanoHABs across broad geographic scales and at regular intervals. Here, the spatial extent was quantified from a cyanobacteria algorithm applied to two EuropeAuthorsBlake Schaeffer, Erin Urquhart, Megan Coffer, Wilson Salls, Richard Stumpf, Keith Loftin, P. Jeremy WerdellA validation of satellite derived cyanobacteria detections with state reported events and recreation advisories across U.S. lakes
Cyanobacteria harmful algal blooms (cyanoHABs) negatively affect ecological, human, and animal health. Traditional methods of validating satellite algorithms with data from water samples are often inhibited by the expense of quantifying cyanobacteria indicators in the field and the lack of public data. However, state recreation advisories and other recorded events of cyanoHAB occurrence reported bAuthorsPeter Whitman, Blake Schaeffer, Wilson Salls, Megan Coffer, Sachidananda Mishra, Bridget Seegers, Keith Loftin, Richard Stumpf, P. Jeremy WerdellSite- and individual-level contaminations affect infection prevalence of an emerging infectious disease of amphibians
Emerging infectious disease outbreaks are one of multiple stressors responsible for amphibian declines globally. In the northeastern United States, ranaviral diseases are prevalent in amphibians and other ectothermic species, but there is still uncertainty as to whether their presence is leading to population level effects. Further, there is also uncertainty surrounding the potential interactionsAuthorsKelly Smalling, Brittany A. Mosher, Luke R. Iwanowicz, Keith Loftin, Adam Boehlke, Michelle Hladik, Carly R. Muletz-Wolz, Nandadevi Córtes-Rodríguez, Robin Femmer, Evan H. Campbell GrantPhytoplankton community interactions and cyanotoxin mixtures in three recurring surface blooms within one lake
Cyanobacteria can produce numerous secondary metabolites (cyanotoxins) with various toxicities, yet data on cyanotoxins in many lakes are limited. Moreover, little research is available on complex relations among cyanobacteria that produce toxins. Therefore, we studied cyanobacteria and 19 cyanotoxins at three sites with recurring blooms in Kabetogama Lake (USA). Seven of 19 toxins were detected iAuthorsVictoria Christensen, Hayley T. Olds, Jack E. Norland, Eakalak KhanA review of algal toxin exposures on reserved federal lands and among trust species in the United States
Associated health effects from algal toxin exposure are a growing concern for human and animal health. Algal toxin poisonings may occur from contact with or consumption of water supplies or from ingestion of contaminated animals. The U.S. Federal Government owns or holds in trust about 259 million hectares of land, in addition to the Trust species obligations. We completed the first comprehensiveAuthorsZachary Laughrey, Victoria Christensen, Robert J. Dusek, Sarena Senegal, Julia S. Lankton, Tracy Ziegler, Lee C. Jones, Daniel Jones, Brianna Williams, Stephanie Gordon, Gerald A. Clyde, Erich B Emery, Keith LoftinCyanobacteria, cyanotoxin synthetase gene, and cyanotoxin occurrence among selected large river sites of the conterminous United States, 2017–18
The U.S. Geological Survey measured cyanobacteria, cyanotoxin synthetase genes, and cyanotoxins at 11 river sites throughout the conterminous United States in a multiyear pilot study during 2017–19 through the National Water Quality Assessment Project to better understand the occurrence of cyanobacteria and cyanotoxins in large inland and coastal rivers. This report focuses on the first 2 years ofAuthorsRobert E. Zuellig, Jennifer L. Graham, Erin A. Stelzer, Keith A. Loftin, Barry H. RosenAcute oral toxicity and tissue residues of saxitoxin in the mallard (Anas platyrhynchos)
Since 2014, widespread, annual mortality events involving multiple species of seabirds have occurred in the Gulf of Alaska, Bering Sea, and Chukchi Sea. Among these die-offs, emaciation was a common finding with starvation often identified as the cause of death. However, saxitoxin (STX) was detected in many carcasses, indicating exposure of these seabirds to STX in the marine environment. Few dataAuthorsRobert J. Dusek, Matthew M. Smith, Caroline R. Van Hemert, Valerie I. Shearn-Bochsler, Sherwood Hall, Clark D. Ridge, Ransome Hardison, Robert Kaler, Barbara Bodenstein, Erik K. Hofmeister, Jeffrey S. HallSatellites for long-term monitoring of inland U.S. lakes: The MERIS time series and application for chlorophyll-a
Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric of water quality, and is frequently used as a proxy for lake trophic statAuthorsBridget Seegers, P. Jeremy Werdell, Ryan Vandermeulen, Wilson Salls, Richard Stumpf, Blake Schaeffer, Tommy Owens, Sean Bailey, Joel Scott, Keith LoftinAssessing cyanobacterial frequency and abundance at surface waters near drinking water intakes across the United States
This study presents the first large-scale assessment of cyanobacterial frequency and abundance of surface water near drinking water intakes across the United States. Public water systems serve drinking water to nearly 90% of the United States population. Cyanobacteria and their toxins may degrade the quality of finished drinking water and can lead to negative health consequences. Satellite imageryAuthorsMegan Coffer, Blake A. Schaeffer, Katherine Foreman, Alex Porteous, Keith Loftin, Richard Stumpf, Jeremy Werdell, Erin Urquhart, Ryan Albert, John Darling - News
Below are news stories associated with this project.