Skip to main content
U.S. flag

An official website of the United States government


Dive into our publications and explore the science from the Environmental Health Program (Toxic Substances Hydrology and Contaminant Biology).

Filter Total Items: 3576

Complete genome sequence of Rhodococcus opacus strain MoAcy1 (DSM 44186), an aerobic acetylenotroph isolated from soil

We report the genome of Rhodococcus opacus strain MoAcy1 (DSM 44186), an aerobic soil isolate capable of using acetylene as its primary carbon and energy source (acetylenotrophy). The genome is composed of a single circular chromosome of ∼8 Mbp and two closed plasmids, with a G+C content of 67.3%.

Oil and gas wastewater components alter streambed microbial community structure and function

The widespread application of directional drilling and hydraulic fracturing technologies expanded oil and gas (OG) development to previously inaccessible resources. A single OG well can generate millions of liters of wastewater, which is a mixture of brine produced from the fractured formations and injected hydraulic fracturing fluids (HFFs). With thousands of wells completed each year, safe manag

Surface-Water and Ground-Water Interactions in the Central Everglades, Florida

Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted

Tandem field and laboratory approaches to quantify attenuation mechanisms of pharmaceutical and pharmaceutical transformation products in a wastewater effluent-dominated stream

Evolving complex mixtures of pharmaceuticals and transformation products in effluent-dominated streams pose potential impacts to aquatic species; thus, understanding the attenuation dynamics in the field and characterizing the prominent attenuation mechanisms of pharmaceuticals and their transformation products (TPs) is critical for hazard assessments. Herein, we determined the attenuation dynamic

Machine learning models of arsenic in private wells throughout the conterminous United States as a tool for exposure assessment in human health studies

Arsenic from geologic sources is widespread in groundwater within the United States (U.S.). In several areas, groundwater arsenic concentrations exceed the U.S. Environmental Protection Agency maximum contaminant level of 10 μg per liter (μg/L). However, this standard applies only to public-supply drinking water and not to private-supply, which is not federally regulated and is rarely monitored. A

A national pilot study of mercury contamination of aquatic ecosystems along multiple gradients" Bioaccumulation in fish

Water, sediment, and fish were sampled in the summer and fall of 1998 at 106 sites from 20 U.S. watershed basins to examine relations of mercury (Hg) and methylmercury (MeHg) in aquatic ecosystems. Bioaccumulation of Hg in fish from these basins was evaluated in relation to species, Hg and MeHg in surficial sediment and water, and watershed characteristics. Bioaccumulation was strongly (positively

Occurrence and spatiotemporal dynamics of pharmaceuticals in a temperate-region wastewater effluent-dominated stream: Variable inputs and differential attenuation yield evolving complex exposure mixtures

Effluent-dominated streams are becoming increasingly common in temperate regions and generate complex pharmaceutical mixture exposure conditions that may impact aquatic organisms via drug–drug interactions. Here, we quantified spatiotemporal pharmaceutical exposure concentrations and composition mixture dynamics during baseflow conditions at four sites in a temperate-region effluent-dominated stre

Relating carbon monoxide photoproduction to dissolved organic matter functionality

Aqueous solutions of humic substances (HSs) and pure monomeric aromatics were irradiated to investigate the chemical controls upon carbon monoxide (CO) photoproduction from dissolved organic matter (DOM). HSs were isolated from lakes, rivers, marsh, and ocean. Inclusion of humic, fulvic, hydrophobic organic, and hydrophilic organic acid fractions from these environments provided samples diverse in

Boreal blazes: Biomass burning and vegetation types archived in the Juneau Icefield

The past decade includes some of the most extensive boreal forest fires in the historical record. Warming temperatures, changing precipitation patterns, the desiccation of thick organic soil layers, and increased ignition from lightning all contribute to a combustive combination. Smoke aerosols travel thousands of kilometers, before blanketing the surfaces on which they fall, such as the Juneau Ic

Freshwater neurotoxins and concerns for human, animal, and ecosystemhealth: A review of anatoxin-a and saxitoxin

Toxic cyanobacteria are a concern worldwide because they can adversely affect humans, animals, and ecosystems. However, neurotoxins produced by freshwater cyanobacteria are understudied relative to microcystin. Thus, the objective of this critical review was to provide a comprehensive examination of the modes of action, production, fate, and occurrence of the freshwater neurotoxins anatoxin-a and

Application of cross-borehole radar to monitor fieldscale vegetable old injection experiments for biostimulation

Cross-borehole radar methods were used to monitor a field-scale biostimulation pilot project at the Anoka County Riverfront Park (ACP), located downgradient of the Naval Industrial Reserve Ordnance Plant, in Fridley, Minnesota. The goal of the pilot project is to evaluate biostimulation using emulsified vegetable oil to treat ground water contaminated with chlorinated hydrocarbons. Vegetable oil i

Use of borehole radar methods and borehole geophysical logs to monitor a field-scale vegetable oil biostimulation pilot project at Fridley, Minnesota

Cross-hole and surface-to-borehole radar and conventional borehole geophysical logs were used to monitor subsurface injections of vegetable oil emulsion conducted as part of a field-scale biostimulation pilot project at the Anoka County Riverfront Park (ACP), located downgradient of the Naval Industrial Reserve Ordnance Plant (NIROP), in Fridley, Minnesota. The pilot project was undertaken to eval