Skip to main content
U.S. flag

An official website of the United States government

Images

Images below come from a wide variety of USGS science activities in the Northeast Region. Science Center staff showcase what we do, who we are, and where we work conducting science that inform decision makers and addresses societal needs. 

Filter Total Items: 2017
Image of Michael Casso giving a lab tour to the Woods Hole Children's School of Science
Woods Hole Science Center hosts Woods Hole Science School students
Woods Hole Science Center hosts Woods Hole Science School students
Woods Hole Science Center hosts Woods Hole Science School students

Michael Casso, Woods Hole Coastal and Marine Science Center physical scientist,  seeks volunteers from Children’s School of Science students to have their breath measured for carbon dioxide and methane, greenhouse gases USGS scientists measure in the oceans

Michael Casso, Woods Hole Coastal and Marine Science Center physical scientist,  seeks volunteers from Children’s School of Science students to have their breath measured for carbon dioxide and methane, greenhouse gases USGS scientists measure in the oceans

Image shows squares of permafrost
Permafrost in the National Petroleum Reserve-Alaska
Permafrost in the National Petroleum Reserve-Alaska
Permafrost in the National Petroleum Reserve-Alaska

Permafrost forms a grid-like pattern in the National Petroleum Reserve-Alaska, a 22.8 million acre region managed by the Bureau of Land Management on Alaska's North Slope. USGS has periodically assessed oil and gas resource potential there. These assessments can be found here.

Permafrost forms a grid-like pattern in the National Petroleum Reserve-Alaska, a 22.8 million acre region managed by the Bureau of Land Management on Alaska's North Slope. USGS has periodically assessed oil and gas resource potential there. These assessments can be found here.

USGS pilot Sandy Brosnahan and Senate Pro Tempore Marc Pacheco
Pilots and Politics
Pilots and Politics
Pilots and Politics

 

USGS pilot Sandy Brosnahan and Senate Pro Tempore Marc Pacheco discuss the use of Umanned Aerial Systems (UASs, also known as drones) to collect data in coastal environments.

 

USGS pilot Sandy Brosnahan and Senate Pro Tempore Marc Pacheco discuss the use of Umanned Aerial Systems (UASs, also known as drones) to collect data in coastal environments.

Photograph of  methane plumes at the Norfolk Canyon seeps
Methane Plumes
Methane Plumes
Methane Plumes

(Top) Methane plumes at the Norfolk Canyon seeps (~1600 meters or 5250 feet) were detected using the EK60 sonar. The water column plumes are shown above the sub-seafloor structure as imaged by high-resolution multichannel seismic data acquired by the USGS and processed by J. Kluesner.

(Top) Methane plumes at the Norfolk Canyon seeps (~1600 meters or 5250 feet) were detected using the EK60 sonar. The water column plumes are shown above the sub-seafloor structure as imaged by high-resolution multichannel seismic data acquired by the USGS and processed by J. Kluesner.

Map of the general expedition area
IMMeRSS Cruise expedition area
IMMeRSS Cruise expedition area
IMMeRSS Cruise expedition area

Map of the general expedition area on the northern U.S. Atlantic Margin between Baltimore Canyon and Cape Hatteras

 Map of distribution of fine- and coarse-grained sand, Stellwagen Bank
Map of distribution of fine- and coarse-grained sand, Stellwagen Bank
Map of distribution of fine- and coarse-grained sand, Stellwagen Bank
Methane bubbles emerging from the seafloor
Tiny bubbles (of methane)
Tiny bubbles (of methane)
Tiny bubbles (of methane)

Methane bubbles emerging from the seafloor at a seep site colonized by chemosynthetic mussels at ~1000 m water depth on the Virginia margin. Photograph taken by the Global Explorer operated by Oceaneering Inc.

Methane bubbles emerging from the seafloor at a seep site colonized by chemosynthetic mussels at ~1000 m water depth on the Virginia margin. Photograph taken by the Global Explorer operated by Oceaneering Inc.

deploying a multicorer to sample the seafloor near an Atlantic margin methane seep site.
Multicorer deployment to sample the seafloor
Multicorer deployment to sample the seafloor
Multicorer deployment to sample the seafloor

USGS ocean engineers Peter Dal Ferro and Gerry Hatcher, from the Pacific Coastal and Marine Science Center in Santa Cruz, California, deploying a multicorer to sample the seafloor near an Atlantic margin methane seep site.

Map of the NE US coast showing several types of data collected by NOAA and the USGS, with explanatory insets
Map shows hill-shaded bathymetric, backscatter, and photographic data
Map shows hill-shaded bathymetric, backscatter, and photographic data
Map shows hill-shaded bathymetric, backscatter, and photographic data

Hill-shaded bathymetric, backscatter, and photographic data collected by NOAA and the USGS. Backscatter data give indications of seafloor character. In general, low-backscatter intensity (blue) corresponds to finer-grained material, whereas high-backscatter intensity (orange) corresponds to coarser substrate.

Hill-shaded bathymetric, backscatter, and photographic data collected by NOAA and the USGS. Backscatter data give indications of seafloor character. In general, low-backscatter intensity (blue) corresponds to finer-grained material, whereas high-backscatter intensity (orange) corresponds to coarser substrate.

Map shows survey lines of the inner continental shelf of the Delmarva Peninsula in green, and data from partners in blue
The USGS conducted surveys on the inner continental shelf of the Delma
The USGS conducted surveys on the inner continental shelf of the Delma
The USGS conducted surveys on the inner continental shelf of the Delma

The USGS conducted surveys on the inner continental shelf of the Delmarva Peninsula (shown in green) to complement related datasets previously collected in the area by partners NOAA and BOEM. The inset map shows location of the study area.

The USGS conducted surveys on the inner continental shelf of the Delmarva Peninsula (shown in green) to complement related datasets previously collected in the area by partners NOAA and BOEM. The inset map shows location of the study area.

From a distance, a man stands behind a table set up on the edge of a marsh operating a small orange craft in the water by cable
USGS scientist measures water, sediment movement in coastal salt marsh
USGS scientist measures water, sediment movement in coastal salt marsh
USGS scientist measures water, sediment movement in coastal salt marsh

USGS scientist Zafer Defne measures water and sediment movement at Forsythe National Wildlife Refuge, New Jersey. Defne is co-author with Neil Ganju of a 2017 study on how to estimate coastal salt marshes’ potential longevity, based on their sediment budgets and the ratio of open water to vegetation.

USGS scientist Zafer Defne measures water and sediment movement at Forsythe National Wildlife Refuge, New Jersey. Defne is co-author with Neil Ganju of a 2017 study on how to estimate coastal salt marshes’ potential longevity, based on their sediment budgets and the ratio of open water to vegetation.

Lake Powell
Lake Powell
Lake Powell
Lake Powell

The USGS Utah Water Science Center and the Woods Hole Coastal and Marine Science Center conducted a collaborative geophysical research effort within Lake Powell, UT-AZ to map the bathymetry of the lake and characterize shallow sediment deposition near the mouths of the San Juan and Colorado Rivers.

The USGS Utah Water Science Center and the Woods Hole Coastal and Marine Science Center conducted a collaborative geophysical research effort within Lake Powell, UT-AZ to map the bathymetry of the lake and characterize shallow sediment deposition near the mouths of the San Juan and Colorado Rivers.

Location Map of Sandy Hook, NJ
Location Map for Sandy Hook artificial reef
Location Map for Sandy Hook artificial reef
Location Map for Sandy Hook artificial reef

Location map for Bathymetry and backscatter intensity of the sea floor of the Sandy Hook artificial reef, offshore of New Jersey, data release.

Was this page helpful?