Skip to main content
U.S. flag

An official website of the United States government

Climate Variability

Filter Total Items: 28

Next Generation Water Observing System: Illinois River Basin

The Next Generation Water Observing System provides high-fidelity, real-time data on water quantity, quality, and use to support modern water prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The Illinois River Basin provides an opportunity to implement the NGWOS in a system challenged by an...
Next Generation Water Observing System: Illinois River Basin

Next Generation Water Observing System: Illinois River Basin

The Next Generation Water Observing System provides high-fidelity, real-time data on water quantity, quality, and use to support modern water prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The Illinois River Basin provides an opportunity to implement the NGWOS in a system challenged by an...
Learn More

Next Generation Water Observing System: Upper Colorado River Basin

The Next Generation Water Observing System (NGWOS) provides high-fidelity, real-time data on water quantity, quality, and use to support modern prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The headwaters of the Colorado and Gunnison River Basins provide an opportunity to implement NGWOS in a...
Next Generation Water Observing System: Upper Colorado River Basin

Next Generation Water Observing System: Upper Colorado River Basin

The Next Generation Water Observing System (NGWOS) provides high-fidelity, real-time data on water quantity, quality, and use to support modern prediction and decision-support systems that are necessary for informing water operations on a daily basis and decision-making during water emergencies. The headwaters of the Colorado and Gunnison River Basins provide an opportunity to implement NGWOS in a...
Learn More

USGS Blue Carbon Projects

Together with partner organizations, the USGS is involved in data collection, analysis, and synthesis to improve estimates of coastal wetland carbon fluxes. This research will help improve science and data availability across a wide range of topics.
USGS Blue Carbon Projects

USGS Blue Carbon Projects

Together with partner organizations, the USGS is involved in data collection, analysis, and synthesis to improve estimates of coastal wetland carbon fluxes. This research will help improve science and data availability across a wide range of topics.
Learn More

Atmospheric Warming, Loss of Snow Cover, and Declining Colorado River Flow

Declining snow cover is playing a key role in decreasing the flow of the Colorado River, “the lifeblood of the Southwest,” by enabling increased evaporation. As the warming continues, increasingly severe water shortages are expected.
Atmospheric Warming, Loss of Snow Cover, and Declining Colorado River Flow

Atmospheric Warming, Loss of Snow Cover, and Declining Colorado River Flow

Declining snow cover is playing a key role in decreasing the flow of the Colorado River, “the lifeblood of the Southwest,” by enabling increased evaporation. As the warming continues, increasingly severe water shortages are expected.
Learn More

National Hydrologic Model Infrastructure

The USGS National Hydrologic Model (NHM) infrastructure supports the efficient construction of local-, regional-, and national-scale hydrologic models. The NHM infrastructure consists of: 1) an underlying geospatial fabric of modeling units with an associated parameter database, 2) a model input data archive, and 3) a repository of the physical model simulation code bases.
National Hydrologic Model Infrastructure

National Hydrologic Model Infrastructure

The USGS National Hydrologic Model (NHM) infrastructure supports the efficient construction of local-, regional-, and national-scale hydrologic models. The NHM infrastructure consists of: 1) an underlying geospatial fabric of modeling units with an associated parameter database, 2) a model input data archive, and 3) a repository of the physical model simulation code bases.
Learn More
International Water Resources Activities

International Water Resources Activities

USGS water-related projects of international interest.
Learn More

Integration of sUAS into Hydrogeophysical Studies: Technology Demonstration and Evaluation

The USGS is evaluating the integration of small unoccupied aircraft systems – sUAS or "drones" – into USGS hydrogeophysical studies. The following projects are part of a Water Resources Mission Area demonstration and evaluation effort in collaboration with USGS Water Science Centers (WSCs) starting in June 2018.
Integration of sUAS into Hydrogeophysical Studies: Technology Demonstration and Evaluation

Integration of sUAS into Hydrogeophysical Studies: Technology Demonstration and Evaluation

The USGS is evaluating the integration of small unoccupied aircraft systems – sUAS or "drones" – into USGS hydrogeophysical studies. The following projects are part of a Water Resources Mission Area demonstration and evaluation effort in collaboration with USGS Water Science Centers (WSCs) starting in June 2018.
Learn More

Groundwater/Surface-Water Interaction

Water and the chemicals it contains are constantly being exchanged between the land surface and the subsurface. Surface water seeps into the ground and recharges the underlying aquifer—groundwater discharges to the surface and supplies the stream with baseflow. USGS Integrated Watershed Studies assess these exchanges and their effect on surface-water and groundwater quality and quantity.
Groundwater/Surface-Water Interaction

Groundwater/Surface-Water Interaction

Water and the chemicals it contains are constantly being exchanged between the land surface and the subsurface. Surface water seeps into the ground and recharges the underlying aquifer—groundwater discharges to the surface and supplies the stream with baseflow. USGS Integrated Watershed Studies assess these exchanges and their effect on surface-water and groundwater quality and quantity.
Learn More

NASA-USGS National Blue Carbon Monitoring System

The NASA-USGS National Blue Carbon Monitoring System project will evaluate the relative uncertainty of iterative modeling approaches to estimate coastal wetland (marsh and mangrove) C stocks and fluxes based on changes in wetland distributions, using nationally available datasets (Landsat) and as well as finer scale satellite and field derived data in six sentinel sites.
NASA-USGS National Blue Carbon Monitoring System

NASA-USGS National Blue Carbon Monitoring System

The NASA-USGS National Blue Carbon Monitoring System project will evaluate the relative uncertainty of iterative modeling approaches to estimate coastal wetland (marsh and mangrove) C stocks and fluxes based on changes in wetland distributions, using nationally available datasets (Landsat) and as well as finer scale satellite and field derived data in six sentinel sites.
Learn More

Global Science and Data Network for Coastal Blue Carbon (SBC)

The Global Science and Data Network for Coastal Blue Carbon (SBC) brings together scientists from a wide range of disciplines. Our goal is to increase the accuracy of and confidence in local, regional, and global estimates of carbon cycle processes, fluxes, and storage as well as greenhouse gas emissions from coastal ecosystems, and to allow global access to quality controlled coastal ecosystem...
Global Science and Data Network for Coastal Blue Carbon (SBC)

Global Science and Data Network for Coastal Blue Carbon (SBC)

The Global Science and Data Network for Coastal Blue Carbon (SBC) brings together scientists from a wide range of disciplines. Our goal is to increase the accuracy of and confidence in local, regional, and global estimates of carbon cycle processes, fluxes, and storage as well as greenhouse gas emissions from coastal ecosystems, and to allow global access to quality controlled coastal ecosystem...
Learn More

Corrosivity

Corrosivity describes how aggressive water is at corroding pipes and fixtures. Corrosive water can cause lead and copper in pipes to leach into drinking water and can eventually cause leaks in plumbing. Surface water and groundwater, both sources of drinking water, can potentially be corrosive.
Corrosivity

Corrosivity

Corrosivity describes how aggressive water is at corroding pipes and fixtures. Corrosive water can cause lead and copper in pipes to leach into drinking water and can eventually cause leaks in plumbing. Surface water and groundwater, both sources of drinking water, can potentially be corrosive.
Learn More

Streamflow Alteration

Humans, just like aquatic organisms, need water. Flood control, urban infrastructure, irrigation of agriculture, and myriad other ways we manage water affect the natural flow of streams and rivers. How do the ways we manage land and water affect the natural patterns of streamflow that ecosystems depend on?
Streamflow Alteration

Streamflow Alteration

Humans, just like aquatic organisms, need water. Flood control, urban infrastructure, irrigation of agriculture, and myriad other ways we manage water affect the natural flow of streams and rivers. How do the ways we manage land and water affect the natural patterns of streamflow that ecosystems depend on?
Learn More
Was this page helpful?