Skip to main content
U.S. flag

An official website of the United States government

Publications

Browse more than 160,000 publications authored by our scientists over the past 100+ year history of the USGS.  Publications available are: USGS-authored journal articles, series reports, book chapters, other government publications, and more.

Filter Total Items: 74839

The effect of drying boreal lakes on plants, soils, and microbial communities in lake margin habitats

Decadal scale lake drying in interior Alaska results in lake margin colonization by willow shrub and graminoid vegetation, but the effects of these changes on plant production, biodiversity, soil properties, and soil microbial communities are not well known. We studied changes in soil organic carbon (SOC) and nitrogen (N) storage, plant and microbial community composition, and soil microbial activ
Authors
Vijay P. Patil, Jack McFarland, Kimberly Wickland, Kristen L. Manies, Mark Winterstein, Teresa N. Hollingsworth, Eugénie S. Euskirchen, Mark Waldrop

Age, growth, and trophic ecology of the Redeye Bass, an introduced invader of California rivers

ObjectiveThe Redeye Bass Micropterus coosae is a piscivore introduced into California, which has become a threat to the state's endemic freshwater fishes. It has eliminated native fishes from the middle reaches of the Cosumnes River, our study stream, which is the largest stream without a major dam on its main stem in the Sacramento–San Joaquin River drainage, central California, USA. We thoroughl
Authors
Beth C. Long, Peter B. Moyle, Matthew J. Young, Patrick K. Crain

Social vulnerability and water insecurity in the western US: A systematic review of framings, indicators, and uncertainty

Water insecurity poses a complex challenge for the western United States. Large populations are exposed and susceptible to physical and social factors that can leave them with precarious access to sufficient water supplies. Consideration of social issues by water managers can help ensure equitable supply. However, how social factors affect water insecurity conditions remains unclear. This paper re
Authors
Oronde Oliver Drakes, Diana Restrepo-Osorio, Kathryn Powlen, Megan Hines

DNA-based studies and genetic diversity indicator assessments are complementary approaches to conserving evolutionary potential

Genetic diversity is essential for maintaining healthy populations and ecosystems. Several approaches have recently been developed to evaluate population genetic trends without necessarily collecting new genetic data. Such “genetic diversity indicators” enable rapid, large-scale evaluation across dozens to thousands of species. Empirical genetic studies, when available, provide detailed informatio
Authors
Sean M. Hoban, Ivan Paz-Vinas, Robyn E. Shaw, Luis Castillo-Reina, Jessica M. da Silva, J. Andrew DeWoody, Robert Ekblom, Ancuta Fedorca, Brenna R. Forester, W. Chris Funk, Julia C. Geue, Myriam Heuertz, Peter M. Hollingsworth, Alice C. Hughes, Margaret Hunter, Christina Hvilsom, Fumiko Ishihama, Rebecca Jordan, Belma Kalamujić Stroil, Francine Kershaw, Colin K. Khoury, Viktoria Köppä, Linda Laikre, Anna J. MacDonald, Alicia Mastretta-Yanes, Mariah H. Meek, Joachim Mergeay, Katie L. Millette, David O'Brien, Victor J. Rincón-Parra, M. Alejandra Rodriguez-Morales, Meredith C. Schuman, Gernot Segelbacher, Paul Sunnucks, Rebecca S. Taylor, Henrik Thurfjell, Cristiano Vernesi, Catherine E. Grueber

Despite regional variation, Gymnorhinus cyanocephalus (Pinyon Jay) densities generally increase with local pinyon–juniper cover and heterogeneous ground cover

Traditionally, local-scale habitat-relationship models are developed over small spatial extents, limiting model transferability and inference outside the study area. Thus, habitat managers frequently lack fine-scale information regarding the influence of vegetation composition and structure on site suitability or species abundance. Gymnorhinus cyanocephalus (Pinyon Jay) represents one declining sp
Authors
Nicholas J. Van Lanen, Adrian P. Monroe, Cameron L. Aldridge

On the uncertain intensity estimate of the 1859 Carrington storm

A study is made of the intensity of the Carrington magnetic storm of September 1859 as inferred from visual measurements of horizontal-component geomagnetic disturbance made at the Colaba observatory in India. Using data from modern observatories, a lognormal statistical model of storm intensity is developed, to characterize the maximum-negative value of the storm-time disturbance index (maximum –
Authors
Jeffrey J. Love, E. Joshua Rigler, H. Hayakawa, Kalevi Mursula

Wildlife health capacity enhancement in Thailand through the World Organisation for Animal Health Twinning Program

There is an increasing need for robust wildlife health programs that provide surveillance and management for diseases in wildlife and wild aquatic populations to manage associated risks. This paper illustrates the value of a systematic method to enhancing wildlife health programs. The U.S. Geological Survey and Mahidol University, Faculty of Veterinary Science, Thailand National Wildlife Health Ce
Authors
Sarin Suwanpakdee, Nareerat Sangkachai, Anuwat Wiratsudakul, Witthawat Wiriyarat, Walasinee Sakcamduang, Peerawat Wongluechai, Choenkwan Pabutta, Ladawan Sariya, Waruja Korkijthamkul, David S. Blehert, C. LeAnn White, Daniel P. Walsh, Craig Stephen, Parntep Ratanakorn, Jonathan M. Sleeman

Uncertainty and spatial correlation in station measurements for mb magnitude estimation

The body‐wave magnitude (⁠⁠) is a long‐standing network‐averaged, amplitude‐based magnitude used to estimate the magnitude of seismic sources from teleseismic observations. The U.S. Geological Survey National Earthquake Information Center (NEIC) relies on in its global real‐time earthquake monitoring mission. Although waveform modeling‐based moment magnitudes are the modern standard to characteri
Authors
William L. Yeck, Adam T. Ringler, David R. Shelly, Paul S. Earle, Harley M. Benz, David C. Wilson

Declines and shifts in morphological diversity of ciscoes (Coregonus spp.) in lakes Huron and Michigan, 1917–2019

Ciscoes (Coregonus spp.) were historically abundant and ecologically important in Laurentian Great Lakes ecosystems. Despite well-documented declines in their abundance and taxonomic diversity, declines in morphological diversity remain understudied. This knowledge gap is especially pertinent for lakes Michigan and Huron, which have each lost six of eight historical species. Improved understanding
Authors
Paul W. Fedorowicz, Yu-Chun Kao, Amanda Susanne Ackiss, Katie Victoria Anweiler, Andrew Edgar Honsey

A unified approach to long-term population monitoring of grizzly bears in the Greater Yellowstone Ecosystem

Long-term wildlife research and monitoring programs strive to maintain consistent data collections and analytical methods. Incorporating new techniques is important but can render data sets incongruent and limit their potential to discern trends in demographic parameters. Integrated population models (IPMs) can address these limitations by combining data sources that may span different periods int
Authors
Matthew J. Gould, Justin Clapp, Mark A. Haroldson, Cecily M. Costello, J. Joshua Nowak, Hans Martin, Michael Ebinger, Daniel D. Bjornlie, Daniel Thompson, Justin A. Dellinger, Matthew Mumma, Paul Lukacs, Frank T. van Manen

In situ allelopathic expression by the invasive amphibious plant, Ludwigia hexapetala (water primrose) across habitat types, seasons, and salinities

Broad infestations of invasive, non-native vegetation have transformed wetlands around the world. Ludwigia hexapetala is a widespread, amphibious invasive plant with a creeping growth habit in open water and an erect growth habit in terrestrial habitats. In the upper San Francisco Estuary of California, L. hexapetala is increasingly terrestrializing into marshes and this expansion may be facilitat
Authors
Judith Z. Drexler, Michael Gross, Michelle Hladik, Bailey Morrison, Erin Hestir

Simulated sea level rise in coastal peat oils stimulates mercury methylation

Coastal wetlands are vulnerable to sea level rise with unknown consequences for mercury (Hg) cycling, particularly the potential for exacerbating neurotoxic methylmercury (MeHg) production and bioaccumulation in food webs. Here, the effect of sea level rise on MeHg formation in the Florida Everglades was evaluated by incubating peat cores from a freshwater wetland for 0–20 days in the laboratory a
Authors
Bryce A. Cook, Benjamin D. Peterson, Jacob M. Ogorek, Sarah E. Janssen, Brett A. Poulin
Was this page helpful?