Skip to main content
U.S. flag

An official website of the United States government

Risks to Coastal Habitats

The Chesapeake Bay region has some of the highest rates of relative sea-level rise along the Atlantic coast. The USGS monitors sea-level rise and simulates potential future changes in the Chesapeake and coasts across the Nation. Projecting the effects of sea-level rise on coastal habitats and communities is essential for planning how to adapt to these future conditions.

Filter Total Items: 20

Prioritizing marsh restoration needs throughout Chesapeake Bay

A new USGS study estimates potential losses of Chesapeake Bay salt marshes that could occur in the next 80 years if no marsh restoration is undertaken. Using a suite of models, USGS researchers identified how future potential marsh changes can be used to prioritize present-day site-specific planning and restoration needs.
Prioritizing marsh restoration needs throughout Chesapeake Bay

Prioritizing marsh restoration needs throughout Chesapeake Bay

A new USGS study estimates potential losses of Chesapeake Bay salt marshes that could occur in the next 80 years if no marsh restoration is undertaken. Using a suite of models, USGS researchers identified how future potential marsh changes can be used to prioritize present-day site-specific planning and restoration needs.
Learn More

Key considerations to accurately predict tidal marsh longevity

A recent study provides key considerations about modeling the timeline of tidal marsh longevity. These timelines can help resource managers envision what future marsh conditions may look like, informing current and long-term adaptive management strategies.
Key considerations to accurately predict tidal marsh longevity

Key considerations to accurately predict tidal marsh longevity

A recent study provides key considerations about modeling the timeline of tidal marsh longevity. These timelines can help resource managers envision what future marsh conditions may look like, informing current and long-term adaptive management strategies.
Learn More

EESC Makes an Impact: Restoring the Chesapeake Bay Watershed

The Chesapeake Bay provides over $100 billion in annual economic value and is home to 18 million people. The USGS, including scientists from the Eastern Ecological Science Center (EESC), works with Federal, State, local, and academic partners to provide research and monitoring and to communicate results to inform management for the Chesapeake and other important landscapes across the Nation.
EESC Makes an Impact: Restoring the Chesapeake Bay Watershed

EESC Makes an Impact: Restoring the Chesapeake Bay Watershed

The Chesapeake Bay provides over $100 billion in annual economic value and is home to 18 million people. The USGS, including scientists from the Eastern Ecological Science Center (EESC), works with Federal, State, local, and academic partners to provide research and monitoring and to communicate results to inform management for the Chesapeake and other important landscapes across the Nation.
Learn More
Coastal Wetland Vulnerability to Climate Change and Sea-Level Rise: Understanding Ecological Thresholds and Ecosystem Transformations

Coastal Wetland Vulnerability to Climate Change and Sea-Level Rise: Understanding Ecological Thresholds and Ecosystem Transformations

Eighteen USGS coastal scientists from all four coasts of the conterminous United States are working together to advance the understanding of climate change and sea-level rise impacts to coastal wetlands.
Learn More

Discovering Connections Across America's Lands and Waters

Through collaboration and coordination, USGS research helps preserve and restore America’s most iconic landscapes. We apply insights across ecosystems to understand how these systems function and change, helping natural resource managers protect our Nation’s natural heritage for generations to come.
Discovering Connections Across America's Lands and Waters

Discovering Connections Across America's Lands and Waters

Through collaboration and coordination, USGS research helps preserve and restore America’s most iconic landscapes. We apply insights across ecosystems to understand how these systems function and change, helping natural resource managers protect our Nation’s natural heritage for generations to come.
Learn More

USGS Chesapeake Accomplishments and Highlights for 2024

As a home to 18 million people and a destination for countless visitors seeking recreational opportunities, the health of the Chesapeake Bay watershed is of critical importance. The U.S. Geological Survey (USGS) is a leading provider of data-driven insights about the condition of the watershed’s lands, waters, fish, and wildlife. These insights and our collaborative work with partners throughout...
USGS Chesapeake Accomplishments and Highlights for 2024

USGS Chesapeake Accomplishments and Highlights for 2024

As a home to 18 million people and a destination for countless visitors seeking recreational opportunities, the health of the Chesapeake Bay watershed is of critical importance. The U.S. Geological Survey (USGS) is a leading provider of data-driven insights about the condition of the watershed’s lands, waters, fish, and wildlife. These insights and our collaborative work with partners throughout...
Learn More

Review of Wildlife Health Outcomes and Potentially Toxic Algal Blooms in the Chesapeake Bay

Scientists provide resources that review algal toxin data, explore links between avian mortality and toxin exposure, and identify future research needs to predict algal toxin health hazards and risks for birds and other wildlife in the Chesapeake Bay.
Review of Wildlife Health Outcomes and Potentially Toxic Algal Blooms in the Chesapeake Bay

Review of Wildlife Health Outcomes and Potentially Toxic Algal Blooms in the Chesapeake Bay

Scientists provide resources that review algal toxin data, explore links between avian mortality and toxin exposure, and identify future research needs to predict algal toxin health hazards and risks for birds and other wildlife in the Chesapeake Bay.
Learn More

The Virginia Extensometer Network

Borehole extensometers are instruments that monitor land subsidence caused by aquifer compaction. They provide precise, high-resolution measurements of changes in aquifer-system thickness. These changes in aquifer-system thickness contribute to vertical land motion (VLM) across the Virginia Coastal Plain, and are driven primarily by groundwater level decline due to human water usage. The Virginia...
The Virginia Extensometer Network

The Virginia Extensometer Network

Borehole extensometers are instruments that monitor land subsidence caused by aquifer compaction. They provide precise, high-resolution measurements of changes in aquifer-system thickness. These changes in aquifer-system thickness contribute to vertical land motion (VLM) across the Virginia Coastal Plain, and are driven primarily by groundwater level decline due to human water usage. The Virginia...
Learn More

Progress Through Partnerships - Chesapeake Bay Vertical Land Motion Project

Chesapeake Bay region has the highest rate of relative sea-level rise on the Atlantic Coast of the United States, and data indicate that vertical land motion in the form of subsidence has been responsible for more than half the relative sea-level rise measured in the Chesapeake Bay region. The Chesapeake Bay Vertical Land Motion Project is a cooperative effort between the USGS and our many...
Progress Through Partnerships - Chesapeake Bay Vertical Land Motion Project

Progress Through Partnerships - Chesapeake Bay Vertical Land Motion Project

Chesapeake Bay region has the highest rate of relative sea-level rise on the Atlantic Coast of the United States, and data indicate that vertical land motion in the form of subsidence has been responsible for more than half the relative sea-level rise measured in the Chesapeake Bay region. The Chesapeake Bay Vertical Land Motion Project is a cooperative effort between the USGS and our many...
Learn More

A Science-Based Approach for Targeting Resources to Achieve Multiple Chesapeake Outcomes

Issue: The Chesapeake Bay Program (CBP) needs to accelerate progress on multiple outcomes to meet deadlines in the Chesapeake Watershed Agreement. The CBP partnership spends about $1.2B annually on activities toward achieving the Watershed Agreement, with a focus on water-quality improvement. Recent funding increases, including the Bipartisan Infrastructure Law, provide additional opportunities to...
A Science-Based Approach for Targeting Resources to Achieve Multiple Chesapeake Outcomes

A Science-Based Approach for Targeting Resources to Achieve Multiple Chesapeake Outcomes

Issue: The Chesapeake Bay Program (CBP) needs to accelerate progress on multiple outcomes to meet deadlines in the Chesapeake Watershed Agreement. The CBP partnership spends about $1.2B annually on activities toward achieving the Watershed Agreement, with a focus on water-quality improvement. Recent funding increases, including the Bipartisan Infrastructure Law, provide additional opportunities to...
Learn More

USGS Part of New Federal Effort to Address Climate Change in the Chesapeake Watershed

Issue: The federal government will work together to implement the Chesapeake Executive Council Directive No. 21-1 Collective Action for Climate Change, recognizing that urgent attention is needed to confront the challenges that a changing climate poses to the Chesapeake Bay region. The Directive emphasizes the importance of the “…resiliency of the Chesapeake Bay Watershed, including its living...
USGS Part of New Federal Effort to Address Climate Change in the Chesapeake Watershed

USGS Part of New Federal Effort to Address Climate Change in the Chesapeake Watershed

Issue: The federal government will work together to implement the Chesapeake Executive Council Directive No. 21-1 Collective Action for Climate Change, recognizing that urgent attention is needed to confront the challenges that a changing climate poses to the Chesapeake Bay region. The Directive emphasizes the importance of the “…resiliency of the Chesapeake Bay Watershed, including its living...
Learn More

New Crowd Sourcing Will Contribute to Study of Land Subsidence and Sea-Level Rise in the Chesapeake Bay

Issue: Chesapeake Bay region has the highest rate of relative sea-level rise on the Atlantic Coast of the United States. Scientists use the term relative sea-level rise to describe the change in ocean height relative to changes in land elevation. Data indicate that vertical land motion in the form of subsidence has been responsible for more than half the relative sea-level rise measured in the...
New Crowd Sourcing Will Contribute to Study of Land Subsidence and Sea-Level Rise in the Chesapeake Bay

New Crowd Sourcing Will Contribute to Study of Land Subsidence and Sea-Level Rise in the Chesapeake Bay

Issue: Chesapeake Bay region has the highest rate of relative sea-level rise on the Atlantic Coast of the United States. Scientists use the term relative sea-level rise to describe the change in ocean height relative to changes in land elevation. Data indicate that vertical land motion in the form of subsidence has been responsible for more than half the relative sea-level rise measured in the...
Learn More
Was this page helpful?