Skip to main content
U.S. flag

An official website of the United States government

Publications

The National Innovation Center partnership development and science support has generated numerous publications over the last decade.

Filter Total Items: 30

Influence of permafrost type and site history on losses of permafrost carbon after thaw

We quantified permafrost peat plateau and post-thaw carbon (C) stocks across a chronosequence in Interior Alaska to evaluate the amount of C lost with thaw. Macrofossil reconstructions revealed three stratigraphic layers of peat: (1) a base layer of fen/marsh peat, (2) peat from a forested peat plateau (with permafrost) and, (3) collapse-scar bog peat (at sites where permafrost thaw has occurred).
Authors
Kristen L. Manies, Miriam C. Jones, Mark Waldrop, Mary-Catherine Leewis, Christopher C. Fuller, Robert S. Cornman, Kristen Hoefke

QCam: sUAS-based doppler radar for measuring river discharge

The U.S. Geological Survey is actively investigating remote sensing of surface velocity and river discharge (discharge) from satellite-, high altitude-, small, unmanned aircraft systems- (sUAS or drone), and permanent (fixed) deployments. This initiative is important in ungaged basins and river reaches that lack the infrastructure to deploy conventional streamgaging equipment. By coupling alternat
Authors
John W. Fulton, Isaac E. Anderson, C.-L. Chiu, Wolfram Sommer, Josip Adams, Tommaso Moramarco, David M. Bjerklie, Janice M. Fulford, Jeff L. Sloan, Heather Best, Jeffrey S. Conaway, Michelle J. Kang, Michael S. Kohn, Matthew J. Nicotra, Jeremy J. Pulli

Profiling lunar dust dissolution in aqueous environments: The design concept

Published studies and internal NASA reports indicate that when native lunar dust is suspended in an aqueous solution a variety of metal and other ions are released. This release has implications for future lunar missions, ranging from effects on mission hardware, effects on life support systems, possible direct effects on human health, and effects on research experiments such as plant growth exper
Authors
Russell Kerschmann, Daniel Winterhalter, Kathleen Scheiderich, David Damby, David Loftus

Robotic environmental DNA bio-surveillance of freshwater health

Autonomous water sampling technologies may help to overcome the human resource challenges of monitoring biological threats to rivers over long time periods and large geographic areas. The Monterey Bay Aquarium Research Institute has pioneered a robotic Environmental Sample Processor (ESP) that overcomes some of the constraints associated with traditional sampling since it can automate water sample
Authors
Adam J. Sepulveda, Jim M. Birch, Elliott Barnhart, Christopher M. Merkes, Kevan Yamahara, Roman III Marin, Stacy Kinsey, Peter R. Wright, Christian Schmidt

Near-field remote sensing of surface velocity and river discharge using radars and the probability concept at 10 USGS streamgages

Near-field remote sensing of surface velocity and river discharge (discharge) were measured using coherent, continuous wave Doppler and pulsed radars. Traditional streamgaging requires sensors be deployed in the water column; however, near-field remote sensing has the potential to transform streamgaging operations through non-contact methods in the U.S. Geological Survey (USGS) and other agencies
Authors
John Fulton, Chris A. Mason, Jack R. Eggleston, Matthew J. Nicotra, C.-L. Chiu, Mark F. Henneberg, Heather Best, Jay Cederberg, Stephen R. Holnbeck, R. Russell Lotspeich, Christopher Laveau, Tommaso Moramarco, Mark E. Jones, Jonathan J Gourley, Danny Wasielewski

Fluorescence spectroscopy of ancient sedimentary organic matter via confocal laser scanning microscopy (CLSM)

Fluorescence spectroscopy via confocal laser scanning microscopy (CLSM) was used to analyze ancient sedimentary organic matter, including Tasmanites microfossils in Devonian shale and Gloecapsomorpha prisca (G. prisca) in Ordovician kukersite from North American basins. We examined fluorescence emission as a function of excitation laser wavelength, sample orientation, and with respect to location
Authors
Paul C. Hackley, Aaron M. Jubb, Robert Burruss, Amy E Beaven

Where’s the rock: Using convolutional neural networks to improve land cover classification

While machine learning techniques have been increasingly applied to land cover classification problems, these techniques have not focused on separating exposed bare rock from soil covered areas. Therefore, we built a convolutional neural network (CNN) to differentiate exposed bare rock (rock) from soil cover (other). We made a training dataset by mapping exposed rock at eight test sites across the
Authors
Helen Petlyak, Corina Cerovski-Darriau, Vadim Zaliva, Jonathan D. Stock

Three-layered silver nanoparticles to trace dissolution and association to a green alga

Core-shell silver nanoparticles (NPs) consisting of an inner Ag core and successive layers of Au and Ag (Ag@Au@Ag) were used to measure the simultaneous association of Ag NPs and ionic Ag by the green alga Chlamydomonas (C.) reinhardtii. Dissolution of the inner Ag core was prevented by a gold (Au) layer, while the outer Ag layer was free to dissolve. In short term experiments, we exposed C. reinh
Authors
Dominic Ponton, Marie-Noële Croteau, Samuel N Luoma, Sahar Pourhoseini, Ruth Merrifield, Jamie Lead

Hydraulic tomography: 3D hydraulic conductivity, fracture network, and connectivity in mudstone

We present the first demonstration of hydraulic tomography (HT) to estimate the three-dimensional (3D) hydraulic conductivity (K) distribution of a fractured aquifer at high-resolution field scale (HRFS), including the fracture network and connectivity through it. We invert drawdown data collected from packer-isolated borehole intervals during 42 pumping tests in a wellfield at the former Naval Ai
Authors
Claire R. Tiedeman, Warren Barrash

A comparison of chlorophyll a values obtained from an autonomous underwater vehicle to satellite-based measures for Lake Michigan

Accurate methods to track changes in lake productivity through time and space are critical to fisheries management. Chlorophyll a is the most widely studied proxy for ecosystem primary production, and has been the topic of many studies. The main sources of chlorophyll a measurements are ship-based measures or multi-spectral satellite data. Autonomous underwater vehicles can survey large spatial ex
Authors
David Bennion, David Warner, Peter Esselman, Brett Hobson, Brian Kieft

Practical approaches to maximizing the resolution of sparker seismic reflection data

Sparkers are a type of sound source widely used by the marine seismic community to provide high-resolution imagery of the shallow sub-bottom (i.e., < 1000 m). Although sparkers are relatively simple, inexpensive, and high-frequency (100–2500 Hz) sources, they have several potential pitfalls due to their complicated and unpredictable signature. In this study we quantify the source characteristics o
Authors
Jared W. Kluesner, Daniel S. Brothers, Patrick E. Hart, Nathaniel C. Miller, Gerry Hatcher

A direct-push freezing core barrel for sampling unconsolidated subsurface sediments and adjacent pore fluids

Contaminants passing through the unsaturated zone can undergo changes in narrow reaction zones upon reaching saturated sediments. Understanding these reactions requires sampling of sediment together with adjacent water and microbes in a manner that preserves in situ redox conditions. Use of a basket-type core catcher for saturated, noncohesive sediments results in redistribution or loss of fluids
Authors
Jared J. Trost, Thomas M. Christy, Barbara A. Bekins