The Elwha River Restoration Project has reconnected the water, salmon, and sediment of a pristine river and coast of the Olympic Peninsula of Washington.
Coordinated by the National Park Service, restoration of the Elwha River included the removal of two large dams that had blocked salmon and sediment passage for almost 100 years. The largest dam removal in U.S. history began in September 2011 and concluded in the summer of 2014. Salmon are once again spawning in pristine river habitats of the Olympic National Park, and sediment is once again flowing down the river and to the eroding shoreline.
From 2011 to 2014, the Nation’s largest dam removal project to date took place in Washington State, allowing the Elwha River to once again flow unimpeded from its origin in the Olympic Mountains to the Strait of Juan de Fuca. Nearly 100 years of sediment (30 million tons) had accumulated behind two dams, and about two-thirds of that (20 million tons) was released, dramatically affecting the river channel, surrounding estuaries, beaches, and the river mouth. USGS expertise focused on understanding and measuring the physical and ecological impacts of dam removal and recovery of this river system alongside multiple partners: Olympic National Park, Lower Elwha Klallam Tribe, Bureau of Reclamation, Washington Department of Ecology, U.S. Fish and Wildlife Service, Environmental Protection Agency, National Ocean.
The USGS Pacific Coastal and Marine Science Center's (PCMSC) diverse suite of data acquisition and analytical tools, as well as expertise, were utilized to assess the progress of the restoration project and to quickly adapt to changing circumstances. The PCMSC mapped the river mouth and seafloor before and after dam removal, and collected water and sediment samples to measure nutrients and other indicators of ecosystem health. Instruments placed on the seafloor near the river mouth measured current velocity, salinity, temperature, light levels, and the amount of sediment suspended in the water. Underwater cameras took photographs periodically to document the changing seafloor environment. Lidar technology recorded landscape changes resulting from the new sediment deposited along the river and the coast. Scuba divers surveyed marine life and habitats near the mouth of the river to evaluate the effects of the high sediment loads.
Before dam removal, the river and coast downstream were starved of sand and gravel essential to the ecosystem that, according to tribal oral histories, formerly supported abundant shellfish. After dam removal, sand started accumulating again along these coastal habitats, helping to reverse long-term erosion. Salmon have begun to recolonize newly available river habitat upstream from both of the former dam sites. The Lower Elwha Klallam Tribe, whose creation site had been submerged since the building of the dams, has now had this culturally significant land returned to them. These are only a few of the ways in which this restoration project has impacted the lives of Washington residents and visitors.
The information gleaned and lessons learned from the extensive study of the Elwha River will inform decision-making for future dam decommissioning projects. This integration was facilitated through a USGS Powell Center working group on dam removal (2014–2015) that incorporated experiences and results from dozens of small and large dam removals into a better understanding of the effects of dam deconstruction. From this work we will be better able to predict the effects of dam removal on the landscape, wildlife, and communities, and how to best engineer these projects for the safety and well-being of local communities and their natural resources.
Below are data sets associated with this project.
Bathymetry and acoustic-backscatter data collected in 2016 offshore the Elwha River mouth, Washington, during USGS Field Activity 2016-605-FA
Oceanographic measurements obtained offshore of the Elwha River delta in coordination with the Elwha River Restoration Project, Washington, USA, 2010-2014
Bathymetry, topography, and sediment grain-size data from the Elwha River delta, Washington
Characterization of seafloor photographs near the mouth of the Elwha River during the first two years of dam removal (2011-2013)
Below are publications associated with this project.
World’s largest dam removal reverses coastal erosion
Morphodynamic evolution following sediment release from the world’s largest dam removal
Sediment pulses can cause widespread, complex changes to rivers and coastal regions. Quantifying landscape response to sediment-supply changes is a long-standing problem in geomorphology, but the unanticipated nature of most sediment pulses rarely allows for detailed measurement of associated landscape processes and evolution. The intentional removal of two large dams on the Elwha River (Washingto
Refining the Baseline Sediment Budget for the Klamath River, California
Four dams in the Klamath River Hydroelectric Project (KHP) in Oregon and California (Figure 1) are currently scheduled to be removed over a period of a few weeks or months, beginning in January 2021. The Klamath dam removal will be the largest in the world by almost all measures, and is an unprecedented opportunity to advance science of river responses to such events. The KHP contains approximatel
Conceptualizing ecological responses to dam removal: If you remove it, what's to come?
Geomorphic evolution of a gravel‐bed river under sediment‐starved vs. sediment‐rich conditions: River response to the world's largest dam removal
Understanding river response to sediment pulses is a fundamental problem in geomorphic process studies, with myriad implications for river management. However, because large sediment pulses are rare and usually unanticipated, they are seldom studied at field scale. We examine fluvial response to a massive (~20 Mt) sediment pulse released by the largest dam removal globally, on the Elwha River, Was
Do we know how much fluvial sediment reaches the sea? Decreased river monitoring of U.S. coastal rivers
River response to large‐dam removal in a Mediterranean hydroclimatic setting: Carmel River, California, USA
Removal of San Clemente Dam did more than restore fish passage
Increased sediment load during a large-scale dam removal changes nearshore subtidal communities
Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington
Geomorphic responses to dam removal in the United States – a two-decade perspective
Dam removal: Listening in
Below are data sets associated with this project.
USGS Dam Removal Information Portal (DRIP)
A tool to explore trends about dam removal science and query scientific studies that evaluate environmental response to dam removals.
Below are software products associated with this project.
Dam Removal Information Portal (DRIP)
The Dam Removal Information Portal (DRIP) is an online representation and visualization tool for the USGS Dam Removal Science Database, and provides a map-based visualization of information of dam removals and associated scientific studies.
Below are news stories associated with this project.
Below are partners associated with this project.
- Overview
The Elwha River Restoration Project has reconnected the water, salmon, and sediment of a pristine river and coast of the Olympic Peninsula of Washington.
Coordinated by the National Park Service, restoration of the Elwha River included the removal of two large dams that had blocked salmon and sediment passage for almost 100 years. The largest dam removal in U.S. history began in September 2011 and concluded in the summer of 2014. Salmon are once again spawning in pristine river habitats of the Olympic National Park, and sediment is once again flowing down the river and to the eroding shoreline.
Computer animation showing changes at the mouth of the Elwha River from 2011 through 2016. Brown-shaded areas are elevations above low tide; blue shades indicate seafloor depths below low tide. Watch the animation loop to see the mouth of the Elwha River grow and change as millions of tons of sediment moved downstream from Olympic National Park to the Pacific Ocean. This Sept. 26, 2012 image from a USGS unoccupied aircraft shows the demolition of Glines Dam and Lake Mills on the Elwha River in Olympic National Park, Washington. From 2011 to 2014, the Nation’s largest dam removal project to date took place in Washington State, allowing the Elwha River to once again flow unimpeded from its origin in the Olympic Mountains to the Strait of Juan de Fuca. Nearly 100 years of sediment (30 million tons) had accumulated behind two dams, and about two-thirds of that (20 million tons) was released, dramatically affecting the river channel, surrounding estuaries, beaches, and the river mouth. USGS expertise focused on understanding and measuring the physical and ecological impacts of dam removal and recovery of this river system alongside multiple partners: Olympic National Park, Lower Elwha Klallam Tribe, Bureau of Reclamation, Washington Department of Ecology, U.S. Fish and Wildlife Service, Environmental Protection Agency, National Ocean.
USGS divers Steve Rubin and Reg Reisenbichler laying out a survey transect in the Elwha River. The USGS Pacific Coastal and Marine Science Center's (PCMSC) diverse suite of data acquisition and analytical tools, as well as expertise, were utilized to assess the progress of the restoration project and to quickly adapt to changing circumstances. The PCMSC mapped the river mouth and seafloor before and after dam removal, and collected water and sediment samples to measure nutrients and other indicators of ecosystem health. Instruments placed on the seafloor near the river mouth measured current velocity, salinity, temperature, light levels, and the amount of sediment suspended in the water. Underwater cameras took photographs periodically to document the changing seafloor environment. Lidar technology recorded landscape changes resulting from the new sediment deposited along the river and the coast. Scuba divers surveyed marine life and habitats near the mouth of the river to evaluate the effects of the high sediment loads.
USGS research ecologist Jeff Duda collects discharge data on a side channel of the Elwha River. During early stages of the dam removal project, hundreds of thousands of tons of fine-grained sediment (mostly silts and sands), trapped for decades behind the dams, delivering new sediment to the lower river corridor. Before dam removal, the river and coast downstream were starved of sand and gravel essential to the ecosystem that, according to tribal oral histories, formerly supported abundant shellfish. After dam removal, sand started accumulating again along these coastal habitats, helping to reverse long-term erosion. Salmon have begun to recolonize newly available river habitat upstream from both of the former dam sites. The Lower Elwha Klallam Tribe, whose creation site had been submerged since the building of the dams, has now had this culturally significant land returned to them. These are only a few of the ways in which this restoration project has impacted the lives of Washington residents and visitors.
The information gleaned and lessons learned from the extensive study of the Elwha River will inform decision-making for future dam decommissioning projects. This integration was facilitated through a USGS Powell Center working group on dam removal (2014–2015) that incorporated experiences and results from dozens of small and large dam removals into a better understanding of the effects of dam deconstruction. From this work we will be better able to predict the effects of dam removal on the landscape, wildlife, and communities, and how to best engineer these projects for the safety and well-being of local communities and their natural resources.
USGS research geologist Guy Gelfenbaum drives a surveying personal watercraft offshore of the Elwha River delta to map changes to the seafloor. Research geologist Amy East confers with physical scientist Josh Logan, preparing a lidar survey near the mouth of the Elwha River. - Data
Below are data sets associated with this project.
Bathymetry and acoustic-backscatter data collected in 2016 offshore the Elwha River mouth, Washington, during USGS Field Activity 2016-605-FA
This data release provides bathymetry and acoustic-backscatter data collected during a 2016 SWATHPlus-M survey offshore the Elwha River mouth, Strait of Juan de Fuca, Washington. Data were collected and processed by the U.S. Geological Survey, Pacific Coastal and Marine Science Center during field activity 2016-605-FA. This survey, along with two other surveys (Cochrane and others, 2008, FinlaysonOceanographic measurements obtained offshore of the Elwha River delta in coordination with the Elwha River Restoration Project, Washington, USA, 2010-2014
Time-series data of velocity, pressure, turbidity, conductivity, and temperature were collected near the mouth of the Elwha River, Washington, USA, from December 2010 through October 2014, for the Department of Interiors Elwha River Restoration project. As part of this project, the U.S. Geological Survey studied the effects of renewed sediment supplies on the coastal ecosystems before, during, andBathymetry, topography, and sediment grain-size data from the Elwha River delta, Washington
Two dams on the Elwha River, Washington State, USA trapped over 20 million cubic meters of sediment, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams between 2011 and 2014 induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the response of a delta systemCharacterization of seafloor photographs near the mouth of the Elwha River during the first two years of dam removal (2011-2013)
We characterized seafloor sediment conditions near the mouth of the Elwha River from underwater photographs taken every four hours from September 2011 to December 2013. A digital camera was affixed to a tripod that was deployed in approximately 10 meters of water (Tripod location from September 2011 to April 2013: 48.15333, -123.55931; tripod location from April 2013 to December 2013: 48.15407, -1 - Multimedia
- Publications
Below are publications associated with this project.
Filter Total Items: 58World’s largest dam removal reverses coastal erosion
Coastal erosion outpaces land generation along many of the world’s deltas and a significant percentage of shorelines, and human-caused alterations to coastal sediment budgets can be important drivers of this erosion. For sediment-starved and erosion-prone coasts, large-scale enhancement of sediment supply may be an important, but poorly understood, management option. Here we provide new topographiAuthorsJonathan Warrick, Andrew W. Stevens, Ian M. Miller, Shawn R Harrison, Andrew C. Ritchie, Guy R. GelfenbaumMorphodynamic evolution following sediment release from the world’s largest dam removal
Sediment pulses can cause widespread, complex changes to rivers and coastal regions. Quantifying landscape response to sediment-supply changes is a long-standing problem in geomorphology, but the unanticipated nature of most sediment pulses rarely allows for detailed measurement of associated landscape processes and evolution. The intentional removal of two large dams on the Elwha River (Washingto
AuthorsAndrew C. Ritchie, Jonathan Warrick, Amy E. East, Christopher S. Magirl, Andrew W. Stevens, Jennifer A. Bountry, Timothy J. Randle, Christopher A. Curran, Robert C. Hilldale, Jeffrey J. Duda, Ian M. Miller, George R. Pess, Emily Eidam, Melissa M. Foley, Randall McCoy, Andrea S. OgstonByEcosystems Mission Area, Natural Hazards Mission Area, Water Resources Mission Area, Coastal and Marine Hazards and Resources Program, Arizona Water Science Center, Pacific Coastal and Marine Science Center, Washington Water Science Center, Western Fisheries Research Center, Sediment Lab Suite and Carbon Analysis LaboratoryRefining the Baseline Sediment Budget for the Klamath River, California
Four dams in the Klamath River Hydroelectric Project (KHP) in Oregon and California (Figure 1) are currently scheduled to be removed over a period of a few weeks or months, beginning in January 2021. The Klamath dam removal will be the largest in the world by almost all measures, and is an unprecedented opportunity to advance science of river responses to such events. The KHP contains approximatel
AuthorsChauncey W. Anderson, Scott A. Wright, Liam N. Schenk, Katherine Skalak, Jennifer A. Curtis, Amy E. East, Adam BenthemConceptualizing ecological responses to dam removal: If you remove it, what's to come?
One of the desired outcomes of dam decommissioning and removal is the recovery of aquatic and riparian ecosystems. To investigate this common objective, we synthesized information from empirical studies and ecological theory into conceptual models that depict key physical and biological links driving ecological responses to removing dams. We define models for three distinct spatial domains: upstreAuthorsJ. Ryan Bellmore, George R. Pess, Jeffrey J. Duda, Jim E. O'Connor, Amy E. East, Melissa M. Foley, Andrew C. Wilcox, Jon J. Major, Patrick B. Shafroth, Sarah A. Morley, Christopher S. Magirl, Chauncey W. Anderson, James E. Evans, Christian E. Torgersen, Laura S. CraigByEcosystems Mission Area, Coastal and Marine Hazards and Resources Program, Species Management Research Program, Arizona Water Science Center, Forest and Rangeland Ecosystem Science Center, Fort Collins Science Center, Geology, Minerals, Energy, and Geophysics Science Center, John Wesley Powell Center for Analysis and Synthesis, Oregon Water Science Center, Pacific Coastal and Marine Science Center, Western Fisheries Research CenterGeomorphic evolution of a gravel‐bed river under sediment‐starved vs. sediment‐rich conditions: River response to the world's largest dam removal
Understanding river response to sediment pulses is a fundamental problem in geomorphic process studies, with myriad implications for river management. However, because large sediment pulses are rare and usually unanticipated, they are seldom studied at field scale. We examine fluvial response to a massive (~20 Mt) sediment pulse released by the largest dam removal globally, on the Elwha River, Was
AuthorsAmy E. East, Joshua B. Logan, Mark C. Mastin, Andrew C. Ritchie, Jennifer A. Bountry, Christopher S. Magirl, Joel B. SankeyDo we know how much fluvial sediment reaches the sea? Decreased river monitoring of U.S. coastal rivers
Given the present and future changing climate and human changes to land use and river control, river sediment fluxes to coastal systems are changing and will continue to change in the future. To delineate these changes and their effects, it is increasingly important to document the fluxes of river-borne sediment discharged to the sea. Unfortunately, broad-scale river sediment monitoring programsAuthorsJonathan Warrick, John D. MillimanRiver response to large‐dam removal in a Mediterranean hydroclimatic setting: Carmel River, California, USA
Dam removal provides a valuable opportunity to measure the fluvial response to changes in both sediment supply and the processes that shape channel morphology. We present the first study of river response to the removal of a large (32‐m‐high) dam in a Mediterranean hydroclimatic setting, on the Carmel River, coastal California, USA. This before‐after/control‐impact study measured changes in channeAuthorsLee R. Harrison, Amy E. East, Douglas P. Smith, Joshua B. Logan, Rosealea Bond, Colin L. Nicol, Thomas H. Williams, David A. Boughton, Kaitlyn Chow, Lauren LunaRemoval of San Clemente Dam did more than restore fish passage
No abstract available.AuthorsThomas H. Williams, Amy E. East, Douglas P. Smith, David A. Boughton, Nate Mantua, Lee R. HarrisonIncreased sediment load during a large-scale dam removal changes nearshore subtidal communities
The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal communAuthorsStephen P. Rubin, Ian M. Miller, Melissa M. Foley, Helen D. Berry, Jeffrey J. Duda, Benjamin Hudson, Nancy E. Elder, Matthew M. Beirne, Jonathan Warrick, Michael L. McHenry, Andrew W. Stevens, Emily Eidam, Andrea Ogston, Guy R. Gelfenbaum, Rob PedersenEphemeral seafloor sedimentation during dam removal: Elwha River, Washington
The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate theAuthorsMelissa M. Foley, Jonathan WarrickGeomorphic responses to dam removal in the United States – a two-decade perspective
Recent decades have seen a marked increase in the number of dams removed in the United States. Investigations following a number of removals are beginning to inform how, and how fast, rivers and their ecosystems respond to released sediment. Though only a few tens of studies detail physical responses to removals, common findings have begun to emerge. They include: (1) Rivers are resilient and respAuthorsJon J. Major, Amy E. East, Jim E. O'Connor, Gordon E. Grant, Andrew C. Wilcox, Christopher S. Magirl, Matthias J. Collins, Desiree D. TullosDam removal: Listening in
Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus farAuthorsMelissa M. Foley, James Bellmore, James E. O'Connor, Jeffrey J. Duda, Amy E. East, Gordon G. Grant, Chauncey W. Anderson, Jennifer A. Bountry, Mathias J. Collins, Patrick J. Connolly, Laura S. Craig, James E. Evans, Samantha Greene, Francis J. Magilligan, Christopher S. Magirl, Jon J. Major, George R. Pess, Timothy J. Randle, Patrick B. Shafroth, Christian E. Torgersen, Desiree D. Tullos, Andrew C. WilcoxByEcosystems Mission Area, Natural Hazards Mission Area, Water Resources Mission Area, Volcano Hazards Program, Volcano Science Center, Forest and Rangeland Ecosystem Science Center, John Wesley Powell Center for Analysis and Synthesis, Oregon Water Science Center, Pacific Coastal and Marine Science Center, Western Fisheries Research Center, Columbia River Research Laboratory (CRRL) - Web Tools
Below are data sets associated with this project.
USGS Dam Removal Information Portal (DRIP)
A tool to explore trends about dam removal science and query scientific studies that evaluate environmental response to dam removals.
- Software
Below are software products associated with this project.
Dam Removal Information Portal (DRIP)
The Dam Removal Information Portal (DRIP) is an online representation and visualization tool for the USGS Dam Removal Science Database, and provides a map-based visualization of information of dam removals and associated scientific studies.
- News
Below are news stories associated with this project.
- Partners
Below are partners associated with this project.