An official website of the United States government
Here's how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Due to a lapse in appropriations, the majority of USGS websites may not be up to date and may not reflect current conditions. Websites displaying real-time data, such as Earthquake, Volcano, LANDSAT and Water information needed for public health and safety will be updated with limited support. Additionally, USGS will not be able to respond to inquiries until appropriations are enacted. For more information, please see www.doi.gov/shutdown.
Eighteen USGS coastal scientists from all four coasts of the conterminous United States are working together to advance the understanding of climate change and sea-level rise impacts to coastal wetlands.
Coastal Wetland Vulnerability to Climate Change and Sea-Level Rise: Understanding Ecological Thresholds and Ecosystem Transformations
Eighteen USGS coastal scientists from all four coasts of the conterminous United States are working together to advance the understanding of climate change and sea-level rise impacts to coastal wetlands.
Coastal environments are dynamic systems that provide high ecological, economical, recreational, and cultural value. Managing coastal systems requires a comprehensive understanding of the complex interactions between geological and ecological processes, as well as the ability to predict both the near-term and long-term impacts of storms and sea-level rise. The Coastal Resource Evaluation for...
Coastal Resource Evaluation for Management Application (CREMA)
Coastal environments are dynamic systems that provide high ecological, economical, recreational, and cultural value. Managing coastal systems requires a comprehensive understanding of the complex interactions between geological and ecological processes, as well as the ability to predict both the near-term and long-term impacts of storms and sea-level rise. The Coastal Resource Evaluation for...
The goal of the Estuarine and MaRsh Geology (EMRG) Research Project is to study how and where short- and long-term marsh and estuarine coastal processes interact, how they influence coastal accretion or erosion, and how they pre-condition a marsh’s resiliency to storms, sea-level change, and human alterations along the northern Gulf of America (Grand Bay and Point aux Chenes, Mississippi and St...
The goal of the Estuarine and MaRsh Geology (EMRG) Research Project is to study how and where short- and long-term marsh and estuarine coastal processes interact, how they influence coastal accretion or erosion, and how they pre-condition a marsh’s resiliency to storms, sea-level change, and human alterations along the northern Gulf of America (Grand Bay and Point aux Chenes, Mississippi and St...
Fire Island is a 50-km long barrier island along the south shore of Long Island, New York. The island is comprised of seventeen year-round communities; federal, state, and county parks; and supports distinct ecosystems alongside areas of economic and cultural value. In addition to providing resources to its residents, the barrier island also protects the heavily-populated mainland from storm waves...
Fire Island is a 50-km long barrier island along the south shore of Long Island, New York. The island is comprised of seventeen year-round communities; federal, state, and county parks; and supports distinct ecosystems alongside areas of economic and cultural value. In addition to providing resources to its residents, the barrier island also protects the heavily-populated mainland from storm waves...
Assessments include depiction of trends (the past points to the future), updated observations (topography/bathymetry), and predicted sensitivity of barrier island evolution to possible climatologies and restoration plans.
Assessments include depiction of trends (the past points to the future), updated observations (topography/bathymetry), and predicted sensitivity of barrier island evolution to possible climatologies and restoration plans.
The Greater Everglades Ecosystem covers much of south Florida, and the highest areas are only a few meters above sea level. Predictions of sea level rise and changes in storm intensity for the 21st century are particularly concerning to the urban population of Miami and the east coast, but also represent a challenge to Everglades National Park and Biscayne National Park resource managers. The...
Sea Level Rise and Climate: Impacts on the Greater Everglades Ecosystem and Restoration
The Greater Everglades Ecosystem covers much of south Florida, and the highest areas are only a few meters above sea level. Predictions of sea level rise and changes in storm intensity for the 21st century are particularly concerning to the urban population of Miami and the east coast, but also represent a challenge to Everglades National Park and Biscayne National Park resource managers. The...
The specific objectives of this project are to identify and describe the processes that are important in determining rates of coral-reef construction. How quickly the skeletons of calcifying organisms accumulate to form massive barrier-reef structure is determined by processes of both construction (how fast organisms grow and reproduce) and destruction (how fast reefs break down by mechanical...
The specific objectives of this project are to identify and describe the processes that are important in determining rates of coral-reef construction. How quickly the skeletons of calcifying organisms accumulate to form massive barrier-reef structure is determined by processes of both construction (how fast organisms grow and reproduce) and destruction (how fast reefs break down by mechanical...
Scientists evaluated and improved the accuracy of pre-landfall forecasts of storm-induced coastal erosion hazards for Northeast beaches using data from post-Sandy lidar sruveys, beach morphology, and storm hydrodamics.
Hurricane Sandy Response - Storm Impacts and Vulnerability of Coastal Beaches
Scientists evaluated and improved the accuracy of pre-landfall forecasts of storm-induced coastal erosion hazards for Northeast beaches using data from post-Sandy lidar sruveys, beach morphology, and storm hydrodamics.
Synchronized field work focused on geochemistry, geology, and metabolic processes overlaid on a habitat map of an entire reef to produce a synoptic overview of reef processes that contribute to carbonate precipitation and dissolution.
Synchronized field work focused on geochemistry, geology, and metabolic processes overlaid on a habitat map of an entire reef to produce a synoptic overview of reef processes that contribute to carbonate precipitation and dissolution.
A sediment trap time series in the northern Gulf of America is used to better assess the control of environmental variables (e.g., temperature and salinity) on the flux of both microfossils and molecular fossils to the sediments. The information gained from sediment trap studies is used to develop better proxy-based estimates of past oceanographic conditions from analyses of microfossils and...
A sediment trap time series in the northern Gulf of America is used to better assess the control of environmental variables (e.g., temperature and salinity) on the flux of both microfossils and molecular fossils to the sediments. The information gained from sediment trap studies is used to develop better proxy-based estimates of past oceanographic conditions from analyses of microfossils and...
This project documents paleoceanographic, climatic, and environmental changes in the Gulf of America and adjacent land areas over the last 10,000 years. The paleoenvironmental data is used to determine rates of change in the past, and to better understand both the natural and anthropogenic factors that contribute to climate variability on inter-annual to millennial timescales.
Climate and Environmental Change in the Gulf of America and Caribbean
This project documents paleoceanographic, climatic, and environmental changes in the Gulf of America and adjacent land areas over the last 10,000 years. The paleoenvironmental data is used to determine rates of change in the past, and to better understand both the natural and anthropogenic factors that contribute to climate variability on inter-annual to millennial timescales.