Skip to main content
U.S. flag

An official website of the United States government

Drought and Floods

Droughts and floods are extreme events in the water cycle that can have catastrophic and lasting impacts on ecosystems and society. The Ecosystems Land Change Science Program integrates data from instrumental and geologic data to understand the impact of these events and to anticipate and mitigate their impacts in the near and distant future.

Filter Total Items: 27

How Science Helps Manage Changing Water Availability and Quality: Droughts, Floods, Avalanches and More

Droughts, floods, and avalanches are extreme events in the water cycle that can have catastrophic and lasting impacts on ecosystems and society. In addition to these extreme events, human changes to the landscape (including land use changes) can have substantial impacts on freshwater resources as well. Science from the USGS Ecosystems Land Change Science Program helps managers and decision-makers...
How Science Helps Manage Changing Water Availability and Quality: Droughts, Floods, Avalanches and More

How Science Helps Manage Changing Water Availability and Quality: Droughts, Floods, Avalanches and More

Droughts, floods, and avalanches are extreme events in the water cycle that can have catastrophic and lasting impacts on ecosystems and society. In addition to these extreme events, human changes to the landscape (including land use changes) can have substantial impacts on freshwater resources as well. Science from the USGS Ecosystems Land Change Science Program helps managers and decision-makers...
Learn More

Research Enhancing Park Recreation and Tourism

Scientists from the USGS Ecosystems Land Change Science Program work hand-in-hand with park managers to support abundant and enduring outdoor recreation and tourism opportunities in the Nation’s national parks.
Research Enhancing Park Recreation and Tourism

Research Enhancing Park Recreation and Tourism

Scientists from the USGS Ecosystems Land Change Science Program work hand-in-hand with park managers to support abundant and enduring outdoor recreation and tourism opportunities in the Nation’s national parks.
Learn More

SBSC: Providing Unbiased Actionable Science & Information to Support Natural Resource Management Needs of the U.S. & Department of the Interior Priorities

The U.S. Geological Survey Southwest Biological Science Center (SBSC) is uniquely positioned in the Colorado River Basin to provide sound information, specialized expertise, and innovative tools to support the management and sustained use of natural resources on public and Tribal lands in the Southwest U.S.
SBSC: Providing Unbiased Actionable Science & Information to Support Natural Resource Management Needs of the U.S. & Department of the Interior Priorities

SBSC: Providing Unbiased Actionable Science & Information to Support Natural Resource Management Needs of the U.S. & Department of the Interior Priorities

The U.S. Geological Survey Southwest Biological Science Center (SBSC) is uniquely positioned in the Colorado River Basin to provide sound information, specialized expertise, and innovative tools to support the management and sustained use of natural resources on public and Tribal lands in the Southwest U.S.
Learn More

Reducing Wildfire Risks with Science

Hotter and drier conditions are making wildfires more intense and destructive across the United States. Science from the USGS Ecosystems Land Change Science Program informs local to national reduction of wildfire hazards, which saves money in avoided losses and fire suppression costs, as well as saves human lives.
Reducing Wildfire Risks with Science

Reducing Wildfire Risks with Science

Hotter and drier conditions are making wildfires more intense and destructive across the United States. Science from the USGS Ecosystems Land Change Science Program informs local to national reduction of wildfire hazards, which saves money in avoided losses and fire suppression costs, as well as saves human lives.
Learn More

Impacts of changing climate and disturbance regimes on forest ecosystem resilience in the Southern Rocky Mountains

Climate-driven forest disturbances, particularly drought-induced tree mortality and large high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies) in the Southern Rockies and across the Western U.S. We will combine unique, long-term place-based ecological data, diverse methods (e.g., paleo...
Impacts of changing climate and disturbance regimes on forest ecosystem resilience in the Southern Rocky Mountains

Impacts of changing climate and disturbance regimes on forest ecosystem resilience in the Southern Rocky Mountains

Climate-driven forest disturbances, particularly drought-induced tree mortality and large high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies) in the Southern Rockies and across the Western U.S. We will combine unique, long-term place-based ecological data, diverse methods (e.g., paleo...
Learn More

Holocene and Modern Drivers of Wetland Change

On a global scale, wetland systems are affected by precipitation extremes, changing sea level, and population growth, influencing their capacity to moderate storm surge, filter contaminants, and provide habitats for fish and wildlife. This research takes a long-term perspective on the resilience of wetlands to a range of environmental- and human-induced changes and supports wetland management by...
Holocene and Modern Drivers of Wetland Change

Holocene and Modern Drivers of Wetland Change

On a global scale, wetland systems are affected by precipitation extremes, changing sea level, and population growth, influencing their capacity to moderate storm surge, filter contaminants, and provide habitats for fish and wildlife. This research takes a long-term perspective on the resilience of wetlands to a range of environmental- and human-induced changes and supports wetland management by...
Learn More

Response of plant, microbial, and soil functions to drought and fire in California

California is experiencing changes in precipitation and wildfire regimes. Longer, hotter fire seasons along with extremes in precipitation are expected to continue. Not only do these disturbances affect the productivity and resilience of ecosystems, they also directly impact human health and wellbeing. Soils hold an immense amount of our terrestrial carbon pool, and the microorganisms and minerals...
Response of plant, microbial, and soil functions to drought and fire in California

Response of plant, microbial, and soil functions to drought and fire in California

California is experiencing changes in precipitation and wildfire regimes. Longer, hotter fire seasons along with extremes in precipitation are expected to continue. Not only do these disturbances affect the productivity and resilience of ecosystems, they also directly impact human health and wellbeing. Soils hold an immense amount of our terrestrial carbon pool, and the microorganisms and minerals...
Learn More

Environmental streamflows in the United States: historical patterns and predictions

The term environmental streamflows refers to the magnitude, frequency, seasonal timing, duration, and rate of change of streamflows needed to sustain freshwater and estuary ecosystems and human wellbeing. It is important that environmental streamflow assessments by water managers consider changes in climate, land use, and water management; this cannot be done effectively without understanding...
Environmental streamflows in the United States: historical patterns and predictions

Environmental streamflows in the United States: historical patterns and predictions

The term environmental streamflows refers to the magnitude, frequency, seasonal timing, duration, and rate of change of streamflows needed to sustain freshwater and estuary ecosystems and human wellbeing. It is important that environmental streamflow assessments by water managers consider changes in climate, land use, and water management; this cannot be done effectively without understanding...
Learn More

Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Drought and fire are powerful disturbance agents that can trigger rapid and lasting changes in the forests of western North America. Over the last decade, increases in fire size and severity coincided with warming, drought, and earlier snowmelt, factors that projected climatic changes are likely to exacerbate. However, recent observations are brief relative to the lifespans of trees and include...
Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Drought and fire are powerful disturbance agents that can trigger rapid and lasting changes in the forests of western North America. Over the last decade, increases in fire size and severity coincided with warming, drought, and earlier snowmelt, factors that projected climatic changes are likely to exacerbate. However, recent observations are brief relative to the lifespans of trees and include...
Learn More

Quaternary Hydroclimate Records of Spring Ecosystems

Desert springs and wetlands are among the most biologically productive, diverse, and fragile ecosystems on Earth. They are home to thousands of rare, endemic, and endangered plants and animals and reflect the availability and health of emergent groundwater. Despite the ecological importance of these wetlands, our knowledge of how they might respond to future environmental conditions is limited...
Quaternary Hydroclimate Records of Spring Ecosystems

Quaternary Hydroclimate Records of Spring Ecosystems

Desert springs and wetlands are among the most biologically productive, diverse, and fragile ecosystems on Earth. They are home to thousands of rare, endemic, and endangered plants and animals and reflect the availability and health of emergent groundwater. Despite the ecological importance of these wetlands, our knowledge of how they might respond to future environmental conditions is limited...
Learn More

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...
Past Perspectives of Water in the West

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...
Learn More

Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...
Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...
Learn More
Was this page helpful?