The New Mexico Landscapes Field Station is a place-based, globally-connected, ecological research group that studies and interprets ecosystem and wildlife dynamics, working with land managers and community leaders to deliver solutions that foster the linked health of human and natural systems.
Our partnerships, and co-location, with land management agencies provide us with opportunities to deliver our research through high-quality science-based conversations. We often work together to develop strategies to adaptively sustain or restore vital ecosystem functioning.
For over three decades, we have used holistic multidisciplinary approaches to develop ecological understanding of the surrounding landscapes and biota. We focus on pressing research needs, from forest watershed health to diseases of sensitive bat species.
Recent and ongoing major changes in northern New Mexico ecosystems, in response to interactions among land use histories, drought stress, and disturbances like fire and insect outbreaks, may be a harbinger of future landscape responses elsewhere. We contribute to global scientific progress and science-based strategies to address management issues locally and beyond.
Long-term Place-based Ecological Monitoring - Principal Investigator - Craig D Allen in cooperation with Kay Beeley of the National Park Service
For over 30 years we have monitored the ecosystem dynamics of the mesas and mountains of northern New Mexico, based at Bandelier National Monument and the New Mexico state office for the Bureau of Land Management. Our work provides land managers and scientists with diverse information on landscape responses to climate and disturbances (fire, drought, insects) such as vegetation and erosion changes, piñon-juniper demography and mortality, weekly tree growth, ground-dwelling arthropod population fluctuations, and detailed ecohydrological info. Being co-located with our management partners, we are able to directly interpret ongoing research through high-quality science-based conversations. We also contribute to broader research networks at regional, national, and global scales.
Western Mountain Initiative: Southern Rocky Mountains - Principal Investigators - Craig D Allen, Ellis Margolis and Jens T Stevens
Mountain ecosystems of the western U.S. provide irreplaceable goods and services such as water, wood, biodiversity, and recreational opportunities, but their potential responses to projected climatic patterns are poorly understood. The overarching objective of the Western Mountain Initiative (WMI) is to understand and predict the responses—emphasizing sensitivities, thresholds, resistance, and resilience—of western mountain ecosystems to climatic variability and change. The WMI - Southern Rocky Mountains project, with diverse research partners, works on forests in the Southwest to: 1) elucidate centennial- to millennial-length shifts in past vegetation and fire regimes; 2) study responses of fire to short-term (annual to decadal) climatic variation; 3) determine drivers of tree mortality, including drought-stress thresholds for dieback; 4) assess patterns of post-disturbance ecosystem recovery; and 5) understand the joint effects of climatic variability, fire, and land use on watershed runoff and erosion processes.
New Mexico Dendroecology Lab - Principal Investigator: Ellis Margolis
An interdisciplinary landscape-scale ecological research program that focuses on the effects of climate variability on forest ecology, fire ecology, and ecohydrology. Much of my research is applied and therefore designed to inform forest, fire, and ecohydrology resource management (for example, Santa Fe Fireshed Collaboration Restoration Initiative). Researchers use dendrochronology as a primary research tool, which involves dendrochronological cross-dating of tree-ring samples, including fire scars and tree ring-width series.
Current research projects include:
-
Tree-ring reconstructions of fire history of the Taos Valley Watersheds.
-
Tree-ring reconstructions of fire history in the Santa Fe Fireshed.
-
The largest mountain range fire scar network in North America: fire regime reconstruction in the Jemez Mountains.
-
Dual-season climate reconstructions and fire-climate relationships in the southwestern United States.
-
Fire history, old-growth forests, and climate variability on the Navajo Nation.
Ecology of Insect-eating Bats - Principal Investigator - Ernie Valdez
Recently, many insectivorous bat species have suffered drastic declines in numbers due to new environmental stressors, both natural and human caused. One of these stressors is the emerging wildlife disease known as white-nose syndrome (WNS). This disease is caused by the fungus Pseudogymnoascus destructans and has been devastating colonies of hibernating bats in the eastern United States for several years. At present, there is no known cure for WNS, which continues to spread north-, south-, and westward. It is likely that the effects of declining insectivorous bat populations will influence insect populations, including possible increases, in some geographic areas of insects that are economic pests.
Documenting Naturally Occurring Bacteria in Bats - Principal Investigator - Ernie Valdez
In 2015, three tri-colored bats (Perimyotis subflavus), a species found primarily in the eastern United States, tested positive for P.d. in eastern Oklahoma. Until March 2016, the discovery of WNS and P.d. in Washington state, these records represented the westernmost occurrence of the disease causing fungus. In addition, records of P.d from eastern Oklahoma are also on the same latitude and trajectory as a possible corridor to the western United States via northeastern New Mexico and southeastern Colorado. In 2003, tri-colored bats were discovered in northeastern New Mexico, thus suggesting that this species is moving into the West via the riparian corridors of northeastern New Mexico.
Tree Mortality Patterns and Processes - Principal Investigator - Craig D Allen
Natural climatic variability, including episodic droughts, has long been known to trigger accelerated tree mortality in forests worldwide, including in the Southwest U.S. Scientific understanding of the process drivers and spatial patterns of tree mortality is surprisingly limited, constraining our ability to model forest responses to projected climate variability. The onset of regional drought since the late 1990s has resulted in extensive die-off episodes of multiple tree species across millions of acres in the Southwest, fostering substantial collaborative tree mortality research in this region. Ongoing tree mortality research in northern New Mexico includes: reconstruction of historic forest dieback patterns; monitoring of forest and woodland demographies (tree mortality and regeneration); experimental determination of physiological thresholds of drought- and heat-induced tree mortality; relationships between tree growth, drought stress, insects/diseases, and mortality; remote-sensing of landscape-scale patterns of forest stress and die-off; documentation of regional, national, and global patterns of forest die-off; and efforts to improve models of tree mortality processes.
Assessing Impacts to Ecosystems from Uranium Mining in the Grand Canyon Region - Principal Investigator - Ernie Valdez
The use of uranium is an alternative energy source to petroleum products and some of the United States’ highest quality ore is located on the Colorado Plateau. However, some regions where suitable mining efforts are conducted include areas that are near important environmental resources such as National Parks that provide viewscapes and habitat for wildlife. Research is ongoing to reduce the uncertainties of mining impacts and effects on water quality and quantity, and better understand the potential toxicological and radiological effects of mining on wildlife, as well as to evaluate the potential impacts on cultural and tribal resources.
Post-fire Recovery Patterns in Southwestern Forests - Project Lead - Jens T Stevens
High-severity crown fires in Southwestern dry-conifer forests — resulting from fire suppression, fuel buildups, and drought — are creating large treeless areas that are historically unprecedented in size. These recent stand-replacing fires have reset extensive portions of Southwest forest landscapes, fostering post-fire successional vegetation that can alter ecological recovery trajectories away from pre-fire forest types toward persistent non-forested ecosystems (shrublands and grasslands). Our team studies areas that burned during the recent persistent regional drought (around 1996-2014) that are recovering under "hotter drought" conditions that foreshadow projected future climate trends. Our field surveys document a wide variety of post-fire ecological responses following stand-replacing crown fires in diverse forest settings, including potential "type conversion" to non-forest. These research results improve understanding of Southwest landscape changes in response to land use and climate, contributing to informed land management decisions regarding adaptation or mitigation strategies to sustain forests under projected “hotter drought” conditions.
Our field surveys document a wide variety of post-fire ecological responses following stand-replacing crown fire, including potential type conversion. These research results improve understanding of Southwest landscape changes in response to early-stage climate warming, contributing to informed land management decisions regarding adaptation or mitigation strategies to address increasingly the “hotter drought” conditions of regional climate projections.
Surveillance for the Presence of White-Nose Syndrome in the Bat Community at El Malpais National Monument, New Mexico - Principal Investigator - Ernie Valdez
To better plan and manage for the possible arrival of WNS, it is imperative to have current information on the occurrence of bat species and the types of habitat they use in the national monument. These data will serve as a current baseline on the status of the existing species and can be compared to historic and future studies alike.
The purpose of this study is to locate new hibernacula, as well as provide an up-to-date assessment of bats and their micro-biota that occur on El Malpais National Monument. This study will provide new insight to what species may be affected by the potential occurrence of white-nose syndrome. Moreover, information from this study will provide information that is critical for managing habitat of the park as well as insight to what species may be using the lava tube systems.
This study will be initiated with a review of the literature, as well as the database of species encountered during the 1999-2000 bat assessment conducted US Geological Survey. Field studies that include acoustic monitoring and mist-netting bats over open water sources will target early emergence of bats during late winter and early spring to allow for detection of hibernacula across the landscape and fungal hyphae, respectively. Mist netting will continue throughout the spring and likely the summer of 2013. All efforts are dependent on local weather conditions and available funding.
Bat Fatalities at Wind Turbines—Investigating the Causes and Consequences
Principal Investigators - Ernie Valdez and Paul Cryan
Wind energy is one of the fastest-growing industries in the world and represents an important step toward reducing dependence on nonrenewable sources of power. However, unprecedented numbers of tree-roosting bats are dying at wind turbines on multiple continents, raising concerns about the well-being of these animals. While causes of bat fatalities at wind turbines remain unknown, potential clues can be found in the patterns of fatalities. TSH scientists, in collaboration with other U.S. Geological Survey (USGS) science centers as well as partners from Federal, State, and non-governmental organizations, are using these clues to focus research efforts. Investigations are underway to better identify the seasonal distributions, habitat needs, and migration patterns of species showing greatest susceptibility, assess the potential roles of mating and feeding behaviors in turbine collisions, develop new video-based methods for studying and monitoring bats flying around wind turbines at night, and test whether bats are attracted to turbines. Findings from these studies are leading us toward new ways of monitoring and possibly avoiding bat fatalities at wind turbines.
Below are other science projects associated with this project.
Synthesis and Forecasts of Piñon-Juniper Woodland Die-off
Long-term, Place-based, Science and Ecological Monitoring
Synthesis of the new North American tree-ring fire-scar network: using past and present fire-climate relationships to improve projections of future wildfire
Next Generation Fire Modeling to Inform the Management of Climate and Fire Driven Ecological Transformations in the Rio Grande Basin
Delivering the North American tree-ring fire history network through a web application and an R package
Effects of disturbance and drought on the forests and hydrology of the Southern Rocky Mountains
Using the Past and the Present To Understand Fire Ecology in the Range of the Gunnison Sage-Grouse
The Western Mountain Initiative (WMI)
Tree Mortality Patterns and Processes
External Microbiota of Bats as Potential Bio-control Against Wildlife Diseases
Post-fire Recovery Patterns in Southwestern Forests
New Mexico Dendroecology Lab
North American tree-ring fire-scar site descriptions
Below are multimedia items associated with this project.
Below are publications associated with this project.
Historical fire regimes and contemporary fire effects within sagebrush habitats of Gunnison Sage-grouse
Indigenous fire management and cross-scale fire-climate relationships in the Southwest United States from 1500 to 1900 CE
Reimagine fire science for the anthropocene
The North American tree-ring fire-scar network
Vegetation type conversion in the US Southwest: Frontline observations and management responses
Joint effects of climate, tree size, and year on annual tree growth derived using tree-ring records of ten globally distributed forests
Tamm review: Postfire landscape management in frequent-fire conifer forests of the southwestern United States
Investigating vegetation responses to underground nuclear explosions through integrated analyses
Native American fire management at an ancient wildland–urban interface in the Southwest United States
Valleys of fire: Historical fire regimes of forest-grassland ecotones across the montane landscape of the Valles Caldera National Preserve, New Mexico, USA
Dendrochronology of a rare long-lived mediterranean shrub
Wildfire-driven forest conversion in western North American landscapes
Below are news stories associated with this project.
Below are partners associated with this project.
- Overview
The New Mexico Landscapes Field Station is a place-based, globally-connected, ecological research group that studies and interprets ecosystem and wildlife dynamics, working with land managers and community leaders to deliver solutions that foster the linked health of human and natural systems.
Our partnerships, and co-location, with land management agencies provide us with opportunities to deliver our research through high-quality science-based conversations. We often work together to develop strategies to adaptively sustain or restore vital ecosystem functioning.
For over three decades, we have used holistic multidisciplinary approaches to develop ecological understanding of the surrounding landscapes and biota. We focus on pressing research needs, from forest watershed health to diseases of sensitive bat species.
Recent and ongoing major changes in northern New Mexico ecosystems, in response to interactions among land use histories, drought stress, and disturbances like fire and insect outbreaks, may be a harbinger of future landscape responses elsewhere. We contribute to global scientific progress and science-based strategies to address management issues locally and beyond.
A USGS science technician studies changes in vegetation at Bandelier National Monument. USGS photo. Long-term Place-based Ecological Monitoring - Principal Investigator - Craig D Allen in cooperation with Kay Beeley of the National Park Service
For over 30 years we have monitored the ecosystem dynamics of the mesas and mountains of northern New Mexico, based at Bandelier National Monument and the New Mexico state office for the Bureau of Land Management. Our work provides land managers and scientists with diverse information on landscape responses to climate and disturbances (fire, drought, insects) such as vegetation and erosion changes, piñon-juniper demography and mortality, weekly tree growth, ground-dwelling arthropod population fluctuations, and detailed ecohydrological info. Being co-located with our management partners, we are able to directly interpret ongoing research through high-quality science-based conversations. We also contribute to broader research networks at regional, national, and global scales.
Southern Rocky Mountains with golden aspen. Photo by Ellis Margolis, USGS. Public domain. Western Mountain Initiative: Southern Rocky Mountains - Principal Investigators - Craig D Allen, Ellis Margolis and Jens T Stevens
Mountain ecosystems of the western U.S. provide irreplaceable goods and services such as water, wood, biodiversity, and recreational opportunities, but their potential responses to projected climatic patterns are poorly understood. The overarching objective of the Western Mountain Initiative (WMI) is to understand and predict the responses—emphasizing sensitivities, thresholds, resistance, and resilience—of western mountain ecosystems to climatic variability and change. The WMI - Southern Rocky Mountains project, with diverse research partners, works on forests in the Southwest to: 1) elucidate centennial- to millennial-length shifts in past vegetation and fire regimes; 2) study responses of fire to short-term (annual to decadal) climatic variation; 3) determine drivers of tree mortality, including drought-stress thresholds for dieback; 4) assess patterns of post-disturbance ecosystem recovery; and 5) understand the joint effects of climatic variability, fire, and land use on watershed runoff and erosion processes.
Ellis Margolis cross dates an old piece of ponderosa pine from the Tesuque watershed outside of Santa Fe, New Mexico. Collin Haffey, USGS, public domain. New Mexico Dendroecology Lab - Principal Investigator: Ellis Margolis
An interdisciplinary landscape-scale ecological research program that focuses on the effects of climate variability on forest ecology, fire ecology, and ecohydrology. Much of my research is applied and therefore designed to inform forest, fire, and ecohydrology resource management (for example, Santa Fe Fireshed Collaboration Restoration Initiative). Researchers use dendrochronology as a primary research tool, which involves dendrochronological cross-dating of tree-ring samples, including fire scars and tree ring-width series.
Current research projects include:
-
Tree-ring reconstructions of fire history of the Taos Valley Watersheds.
-
Tree-ring reconstructions of fire history in the Santa Fe Fireshed.
-
The largest mountain range fire scar network in North America: fire regime reconstruction in the Jemez Mountains.
-
Dual-season climate reconstructions and fire-climate relationships in the southwestern United States.
-
Fire history, old-growth forests, and climate variability on the Navajo Nation.
Research Wildlife Biologist, Ernie Valdez, holds a long-eared bat (Myotis evotis) that will be swabbed for bacteria that may serve as natural defenses against white-nose syndrome. Ecology of Insect-eating Bats - Principal Investigator - Ernie Valdez
Recently, many insectivorous bat species have suffered drastic declines in numbers due to new environmental stressors, both natural and human caused. One of these stressors is the emerging wildlife disease known as white-nose syndrome (WNS). This disease is caused by the fungus Pseudogymnoascus destructans and has been devastating colonies of hibernating bats in the eastern United States for several years. At present, there is no known cure for WNS, which continues to spread north-, south-, and westward. It is likely that the effects of declining insectivorous bat populations will influence insect populations, including possible increases, in some geographic areas of insects that are economic pests.
Documenting Naturally Occurring Bacteria in Bats - Principal Investigator - Ernie Valdez
In 2015, three tri-colored bats (Perimyotis subflavus), a species found primarily in the eastern United States, tested positive for P.d. in eastern Oklahoma. Until March 2016, the discovery of WNS and P.d. in Washington state, these records represented the westernmost occurrence of the disease causing fungus. In addition, records of P.d from eastern Oklahoma are also on the same latitude and trajectory as a possible corridor to the western United States via northeastern New Mexico and southeastern Colorado. In 2003, tri-colored bats were discovered in northeastern New Mexico, thus suggesting that this species is moving into the West via the riparian corridors of northeastern New Mexico.
Area outside of Bandelier National Monument during early 2000s drought, in which greater than 95% of the mature piñon pine trees died due to warmer temperatures and bark beetle infestations. Craig D. Allen, USGS, public domain. Tree Mortality Patterns and Processes - Principal Investigator - Craig D Allen
Natural climatic variability, including episodic droughts, has long been known to trigger accelerated tree mortality in forests worldwide, including in the Southwest U.S. Scientific understanding of the process drivers and spatial patterns of tree mortality is surprisingly limited, constraining our ability to model forest responses to projected climate variability. The onset of regional drought since the late 1990s has resulted in extensive die-off episodes of multiple tree species across millions of acres in the Southwest, fostering substantial collaborative tree mortality research in this region. Ongoing tree mortality research in northern New Mexico includes: reconstruction of historic forest dieback patterns; monitoring of forest and woodland demographies (tree mortality and regeneration); experimental determination of physiological thresholds of drought- and heat-induced tree mortality; relationships between tree growth, drought stress, insects/diseases, and mortality; remote-sensing of landscape-scale patterns of forest stress and die-off; documentation of regional, national, and global patterns of forest die-off; and efforts to improve models of tree mortality processes.
Acoustic bat detectors and light traps used to sample for bats and insects at detention ponds located on and near uranium mines adjacent to the Grand Canyon. USGS photo, public domain. Assessing Impacts to Ecosystems from Uranium Mining in the Grand Canyon Region - Principal Investigator - Ernie Valdez
The use of uranium is an alternative energy source to petroleum products and some of the United States’ highest quality ore is located on the Colorado Plateau. However, some regions where suitable mining efforts are conducted include areas that are near important environmental resources such as National Parks that provide viewscapes and habitat for wildlife. Research is ongoing to reduce the uncertainties of mining impacts and effects on water quality and quantity, and better understand the potential toxicological and radiological effects of mining on wildlife, as well as to evaluate the potential impacts on cultural and tribal resources.
High-severity crown fires in Southwestern dry conifer forests have created large treeless areas, un-precedented in the regional record. Photo by: Viveash. Public domain. Post-fire Recovery Patterns in Southwestern Forests - Project Lead - Jens T Stevens
High-severity crown fires in Southwestern dry-conifer forests — resulting from fire suppression, fuel buildups, and drought — are creating large treeless areas that are historically unprecedented in size. These recent stand-replacing fires have reset extensive portions of Southwest forest landscapes, fostering post-fire successional vegetation that can alter ecological recovery trajectories away from pre-fire forest types toward persistent non-forested ecosystems (shrublands and grasslands). Our team studies areas that burned during the recent persistent regional drought (around 1996-2014) that are recovering under "hotter drought" conditions that foreshadow projected future climate trends. Our field surveys document a wide variety of post-fire ecological responses following stand-replacing crown fires in diverse forest settings, including potential "type conversion" to non-forest. These research results improve understanding of Southwest landscape changes in response to land use and climate, contributing to informed land management decisions regarding adaptation or mitigation strategies to sustain forests under projected “hotter drought” conditions.
Our field surveys document a wide variety of post-fire ecological responses following stand-replacing crown fire, including potential type conversion. These research results improve understanding of Southwest landscape changes in response to early-stage climate warming, contributing to informed land management decisions regarding adaptation or mitigation strategies to address increasingly the “hotter drought” conditions of regional climate projections.
A healthy, banded little brown bat hangs out in a cave. Photo credit: Paul Cryan, USGS. Paul Cryan, USGS, public domain. Surveillance for the Presence of White-Nose Syndrome in the Bat Community at El Malpais National Monument, New Mexico - Principal Investigator - Ernie Valdez
To better plan and manage for the possible arrival of WNS, it is imperative to have current information on the occurrence of bat species and the types of habitat they use in the national monument. These data will serve as a current baseline on the status of the existing species and can be compared to historic and future studies alike.
The purpose of this study is to locate new hibernacula, as well as provide an up-to-date assessment of bats and their micro-biota that occur on El Malpais National Monument. This study will provide new insight to what species may be affected by the potential occurrence of white-nose syndrome. Moreover, information from this study will provide information that is critical for managing habitat of the park as well as insight to what species may be using the lava tube systems.
This study will be initiated with a review of the literature, as well as the database of species encountered during the 1999-2000 bat assessment conducted US Geological Survey. Field studies that include acoustic monitoring and mist-netting bats over open water sources will target early emergence of bats during late winter and early spring to allow for detection of hibernacula across the landscape and fungal hyphae, respectively. Mist netting will continue throughout the spring and likely the summer of 2013. All efforts are dependent on local weather conditions and available funding.
Tall wind turbines in a semi-arid shrubland with a bright rainbow. Jeff Lovich, USGS. Bat Fatalities at Wind Turbines—Investigating the Causes and Consequences
Principal Investigators - Ernie Valdez and Paul Cryan
Wind energy is one of the fastest-growing industries in the world and represents an important step toward reducing dependence on nonrenewable sources of power. However, unprecedented numbers of tree-roosting bats are dying at wind turbines on multiple continents, raising concerns about the well-being of these animals. While causes of bat fatalities at wind turbines remain unknown, potential clues can be found in the patterns of fatalities. TSH scientists, in collaboration with other U.S. Geological Survey (USGS) science centers as well as partners from Federal, State, and non-governmental organizations, are using these clues to focus research efforts. Investigations are underway to better identify the seasonal distributions, habitat needs, and migration patterns of species showing greatest susceptibility, assess the potential roles of mating and feeding behaviors in turbine collisions, develop new video-based methods for studying and monitoring bats flying around wind turbines at night, and test whether bats are attracted to turbines. Findings from these studies are leading us toward new ways of monitoring and possibly avoiding bat fatalities at wind turbines.
-
- Science
Below are other science projects associated with this project.
Filter Total Items: 18Synthesis and Forecasts of Piñon-Juniper Woodland Die-off
Drought, hotter temperatures, and insect outbreaks are affecting dryland ecosystems across the globe. Pinon-juniper (PJ) woodlands are a widespread vegetation type common to drylands of North America, which have been hit particularly hard by a warming climate. Specifically, mass tree die-off events are transforming PJ woodland structure, composition, and distributions. This project aims to...Long-term, Place-based, Science and Ecological Monitoring
For over 30 years we have monitored the ecosystem dynamics of the mesas and mountains of northern New Mexico, co-located with mangers. We use a place-based science approach, defined as “science that is founded on long-term, repeated, field data and observations, as well as traditional knowledges, and regularly engages local managers and community members.” This approach enables us to provide land...Synthesis of the new North American tree-ring fire-scar network: using past and present fire-climate relationships to improve projections of future wildfire
Increasing wildfire activity in much of North America is having severe impacts on society and ecosystems. Climate change is a key driver of changing fire regimes across North America, with varying expressions across the continent. Modern fire records, while useful, are too short to fully characterize the complex patterns and non-linear dynamics of fire-climate relationships that are required to unNext Generation Fire Modeling to Inform the Management of Climate and Fire Driven Ecological Transformations in the Rio Grande Basin
The warming climate combined with a century of fuel build up (i.e. burnable plant materials found in the forest) due to fire suppression are driving megafires that threaten life and property and are severely altering ecosystems. Many of these fires are converting large areas of forest to shrub fields or grasslands, termed “ecological transformations.” Although uncharacteristically severe fires are...Delivering the North American tree-ring fire history network through a web application and an R package
Wildfires are increasing across the western U.S., causing damage to ecosystems and communities. Addressing the fire problem requires understanding the trends and drivers of fire, yet most fire data is limited only to recent decades. Tree-ring fire scars provide fire records spanning 300-500 years, yet these data are largely inaccessible to potential users. Our project will deliver the newly compilEffects of disturbance and drought on the forests and hydrology of the Southern Rocky Mountains
Climate-related forest disturbances, particularly drought-induced tree mortality and large, high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies). Our research combines long-term place-based ecological data, diverse methods (e.g., paleo, remote-sensing), and networking approaches to...Using the Past and the Present To Understand Fire Ecology in the Range of the Gunnison Sage-Grouse
Little is known about the role of fire in the sagebrush ecosystem within the range of the Gunnison sage-grouse (Centrocercus minimus), and fire has been mostly absent from these systems in the 20th century, partially owing to active fire suppression.The Western Mountain Initiative (WMI)
Western Mountain Initiative (WMI) is a long-term collaboration between FORT, WERC, NOROCK, USFS, NPS, LANL, and universities worldwide to address changes in montane forests and watersheds due to climate change. Current emphases include altered forest disturbance regimes (fire, die-off, insect outbreaks) and hydrology; interactions between plants, water, snow, nutrient cycles, and climate; and...Tree Mortality Patterns and Processes
Natural climatic variability, including episodic droughts, has long been known to trigger accelerated tree mortality in forests worldwide, including in the Southwest U.S. Scientific understanding of the process drivers and spatial patterns of tree mortality is surprisingly limited, constraining our ability to model forest responses to projected climate changes. The onset of regional drought since...External Microbiota of Bats as Potential Bio-control Against Wildlife Diseases
White-nose syndrome (WNS) and/or Pseudogymnoascus destructans (P.d.), the causal agent, has spread westward across 26 states and 5 provinces within the eastern United States and Canada, respectively, over a short period of time. Since its discovery there has been a search to stop the spread of this disease that has killed millions of hibernating bats in its wake. Recent collaborative work by FORT...Post-fire Recovery Patterns in Southwestern Forests
High-severity crown fires in Southwestern dry-conifer forests — resulting from fire suppression, fuel buildups, and drought — are creating large treeless areas that are historically unprecedented in size. These recent stand-replacing fires have reset extensive portions of Southwest forest landscapes, fostering post-fire successional vegetation that can alter ecological recovery trajectories away...New Mexico Dendroecology Lab
Using tree ring analysis as a primary research tool, we conduct landscape-scale ecological research that focuses on the effects of climate variability on forest ecology, fire ecology, and ecohydrology. We are the only tree-ring lab in New Mexico, working in close collaboration with Bandelier National Monument and Emeritus Regents’ Professor Dr. Thomas Swetnam. However, we were not the first... - Data
North American tree-ring fire-scar site descriptions
Fire size and severity continue to increase across large parts of North America, driven by a combination of climate change and effects of human land use. Instrumental records are too short to fully understand patterns, trends, and drivers of fire that are necessary to model future fire. Tree-ring fire scars provide centuries-long records of fire regimes, including fire frequency, season, size, and - Multimedia
Below are multimedia items associated with this project.
- Publications
Below are publications associated with this project.
Filter Total Items: 45Historical fire regimes and contemporary fire effects within sagebrush habitats of Gunnison Sage-grouse
The historical role of fire in sagebrush (Artemisia tridentata) landscapes remains poorly understood, yet is important to inform management and conservation of obligate species such as the threatened Gunnison Sage-grouse (GUSG; Centrocercus minimus). We reconstructed fire histories from tree-ring fire scars at sagebrush–forest ecotones (10 sites, 111 trees) to better understand the role of fire inAuthorsPetar Simic, Jonathan Coop, Ellis Margolis, Jessica R. Young, Manuel K. LopezIndigenous fire management and cross-scale fire-climate relationships in the Southwest United States from 1500 to 1900 CE
Prior research suggests that Indigenous fire management buffers climate influences on wildfires, but it is unclear whether these benefits accrue across geographic scales. We use a network of 4824 fire-scarred trees in Southwest United States dry forests to analyze up to 400 years of fire-climate relationships at local, landscape, and regional scales for traditional territories of three different IAuthorsChris I. Roos, Christopher H. Guiterman, Ellis Margolis, Thomas W. Swetnam, Nicholas C. Laluk, Kerry F. Thompson, Chris Toya, Calvin A. Farris, Peter Z. Fulé, Jose M. Iniguez, J. Mark Kaib, Christopher D. O’Connor, Lionel WhitehairReimagine fire science for the anthropocene
Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, andAuthorsJacquelyn K. Shuman, Jennifer K. Balch, Rebecca T. Barnes, Philip E. Higuera, Christopher I. Roos, Dylan W. Schwilk, E. Natasha Stavros, Tirtha Banerjee, Megan Bela, Jacob Bendix, Sandro Bertolino, Solomon Bililign, Kevin D. Bladon, Paulo Brando, Robert E. Breidenthal, Brian Buma, Donna Calhoun, Leila M. V. Carvalho, Megan Cattau, Kaelin M Cawley, Sudeep Chandra, Melissa L. Chipman, Jeanette Cobian, Erin Conlisk, Jonathan Coop, Alison Cullen, Kimberley T Davis, Archana Dayalu, Megan Dolman, Lisa M. Ellsworth, Scott Franklin, Chris Guiterman, Matthew Hamilton, Erin J. Hanan, Winslow D. Hansen, Stijn Hantson, Brian J Harvey, Andrés Holz, Matt Hurteau, Nayani T Ilangakoon, Megan Jennings, Charles Jones, Anna Klimaszewski-Patterson, Leda N. Kobziar, John Kominoski, Branko Kosovic, Meg A. Krawchuk, Paul Laris, Jackson Leonard, S. Marcela Loria- Salazar, Melissa Lucash, Hussam Mahmoud, Ellis Margolis, Toby Maxwell, Jessica McCarty, David B McWethy, Rachel Meyer, Jessica R. Miesel, W. Keith Moser, R. Chelsea Nagy, Dev Niyogi, Hannah M. Palmer, Adam Pellegrini, Benjamin Poulter, Kevin Robertson, Adrian Rocha, Mojtaba Sadegh, Fernando De Sales, Fernanda Santos, Facundo Scordo, Joseph O. Sexton, A Surjalal Sharma, Alistair M. S. Smith, Amber Soja, Christopher Still, Tyson Swetnam, Alexandra D. Syphard, Morgan W. Tingey, Ali Tohidi, Anna Trugman, Merritt Turetsky, J. Morgan Varner, Yuhang Wang, Thea Whitman, Stephanie Yelenik, Xuan ZhangThe North American tree-ring fire-scar network
Fire regimes in North American forests are diverse and modern fire records are often too short to capture important patterns, trends, feedbacks, and drivers of variability. Tree-ring fire scars provide valuable perspectives on fire regimes, including centuries-long records of fire year, season, frequency, severity, and size. Here, we introduce the newly compiled North American tree-ring fire-scarAuthorsEllis Margolis, Christopher H. Guiterman, Raphael Chavardès, Jonathan D. Coop, Kelsey Copes-Gerbitz, Denyse A. Dawe, Donald A. Falk, James D. Johnston, Evan Larson, Hangkyo Lim, Joseph M. Marschall, Cameron E. Naficy, Adam T. Naito, Marc-André Parisien, Sean A. Parks, Jeanne Portier, Helen M. Poulos, Kevin M. Robertson, James H. Speer, Michael C. Stambaugh, Thomas W. Swetnam, Alan J. Tepley, Ichchha Thapa, Craig D. Allen, Yves Bergeron, Lori D. Daniels, Peter Z. Fulé, David Gervais, Martin P. Girardin, Grant L. Harley, Jill E. Harvey, Kira M. Hoffman, Jean M. Huffman, Matthew D. Hurteau, Lane B. Johnson, Charles W. Lafon, Manuel K. Lopez, R. Stockton Maxwell, Jed Meunier, Malcolm North, Monica T. Rother, Micah R. Schmidt, Rosemary L. Sherriff, Lauren A. Stachowiak, Alan H. Taylor, Erana J. Taylor, Valerie Trouet, Miguel L. Villarreal, Larissa L. Yocom, Karen B. Arabas, Alexis H. Arizpe, Dominique Arseneault, Alicia Azpeleta Tarancón, Christopher H. Baisan, Erica Bigio, Franco Biondi, Gabriel D. Cahalan, Anthony C. Caprio, Julián Cerano-Paredes, Brandon M. Collins, Daniel C. Dey, Igor Drobyshev, Calvin A. Farris, M. Adele Fenwick, William T. Flatley, M. Lisa Floyd, Ze'ev Gedalof, Andres Holz, Lauren F. Howard, David W. Huffman, Jose Iniguez, Kurt F. Kipfmueller, Stanley G Kitchen, Keith Lombardo, Donald McKenzie, Andrew G. Merschel, Kerry L. Metlen, Jesse Minor, Christopher D. O'Connor, Laura Platt, William J. Platt, Thomas Saladyga, Amanda B. Stan, Scott L. Stephens, Colleen Sutheimer, Ramzi Touchan, Peter J. WeisbergVegetation type conversion in the US Southwest: Frontline observations and management responses
Forest and nonforest ecosystems of the western United States are experiencing major transformations in response to land-use change, climate warming, and their interactive effects with wildland fire. Some ecosystems are transitioning to persistent alternative types, hereafter called “vegetation type conversion” (VTC). VTC is one of the most pressing management issues in the southwestern US, yet curAuthorsChristopher H. Guiterman, Rachel M. Gregg, Laura A.E. Marshall, Jill J. Beckmann, Phillip J. van Mantgem, Donald A. Falk, Jon Keeley, Anthony C. Caprio, Jonathan D. Coop, Paula J. Fornwalt, Collin Haffey, R. Keala Hagmann, Stephen Jackson, Ann M. Lynch, Ellis Margolis, Christopher Marks, Marc D. Meyer, Hugh Safford, Alexandra Dunya Syphard, Alan H. Taylor, Craig Wilcox, Dennis Carril, Carolyn Armstrong Enquist, David W. Huffman, Jose Iniguez, Nicole A. Molinari, Christina M Restaino, Jens T. StevensJoint effects of climate, tree size, and year on annual tree growth derived using tree-ring records of ten globally distributed forests
Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously account for the effects of climate, tree size, and other drivers on individual growth, which has limited the potential to use tree rings to understand forest productivity, itAuthorsKristina J. Anderson-Teixeira, Valentine Herrmann, Christy Rollinson, Bianca Gonzales, Erika B. Gonzalez-Akre, Neil Pederson, M. Ross Alexander, Craig D. Allen, Raquel Alfaro-Sánchez, Tala Awada, Jennifer L. Baltzer, Patrick J. Baker, Joseph D. Birch, Sarayudh Bunyavejchewin, Paolo Cherubini, Stewart J. Davies, Cameron Dow, Ryan Helcoski, Jakub Kašpar, James A. Lutz, Ellis Margolis, Justin Maxwell, Sean M. McMahon, Camille Piponiot, Sabrina E. Russo, Pavel Šamonil, Anastasia E. Sniderhan, Alan J. Tepley, Ivana Vašíčková, Mart Vlam, Pieter A. ZuidemaTamm review: Postfire landscape management in frequent-fire conifer forests of the southwestern United States
The increasing incidence of wildfires across the southwestern United States (US) is altering the contemporary forest management template within historically frequent-fire conifer forests. An increasing fraction of southwestern conifer forests have recently burned, and many of these burned landscapes contain complex mosaics of surviving forest and severely burned patches without surviving conifer tAuthorsJens T. Stevens, Collin Haffey, Jonathan D. Coop, Paula J. Fornwalt, Larissa Yocom, Craig D. Allen, Anne Bradley, Owen T. Burney, Dennis Carril, Marin E. Chambers, Theresa B. Chapman, Sandra L. Haire, Matthew D. Hurteau, José M. Iniguez, Ellis Margolis, Christopher Marks, Laura A. E. Marshall, Kyle C. Rodman, Camille S. Stevens-Rumann, Andrea E. Thode, Jessica J. WalkerInvestigating vegetation responses to underground nuclear explosions through integrated analyses
Vegetation has the potential to respond to underground nuclear explosions, yet these links have not been fully explored. Given the lack of previously described signatures, the changes in vegetation are possibly subtle. The integration of multiple different data streams is potentially a useful approach to improve signal detection. Here, we investigate whether semi-arid vegetation growth patterns reAuthorsKurt Solander, Adam D. Collins, Erika Swanson, Ellis Margolis, Brandon Crawford, Elizabeth Miller, Min Chen, Anita Lavadie-Bulnes, Max Ryan, Isaac Borrego, Sanna Sevanto, Emily Schultz-FellenzNative American fire management at an ancient wildland–urban interface in the Southwest United States
The intersection of expanding human development and wildland landscapes—the “wildland–urban interface” or WUI—is one of the most vexing contexts for fire management because it involves complex interacting systems of people and nature. Here, we document the dynamism and stability of an ancient WUI that was apparently sustainable for more than 500 y. We combine ethnography, archaeology, paleoecologyAuthorsChristopher Roos, Thomas W. Swetnam, T. J. Ferguson, Matthew J. Liebmann, Rachel A. Loehman, John Welch, Ellis Margolis, Christopher H. Guiterman, William Hockaday, Michael Aiuvalasit, Jenna Battillo, Joshua Farella, Christopher KiahtipesValleys of fire: Historical fire regimes of forest-grassland ecotones across the montane landscape of the Valles Caldera National Preserve, New Mexico, USA
ContextMontane grasslands and forest-grassland ecotones are unique and dynamic components of many landscapes, but the processes that regulate their dynamics are difficult to observe over ecologically relevant time spans.ObjectivesWe aimed to demonstrate the efficacy of using grassland-forest ecotone trees to reconstruct spatial and temporal properties of the historical fire regime in a complex lanAuthorsJ. J. Dewar, Donald A. Falk, T. W. Swetnam, C. H. Baisan, Craig D. Allen, R. R. Parmenter, Ellis MargolisDendrochronology of a rare long-lived mediterranean shrub
Ceanothus verrucosus (CEVE) is a globally rare, long-lived, chaparral shrub endemic to coastal southern California (CA) and northern Mexico. There is concern for CEVE persistence because of habitat loss, fire, and climate change, yet little is known about basic features of the plant, including whether it contains annual rings, plant age, and climate–growth response. Growth-ring analysis was challeAuthorsEllis Margolis, Keith Lombardo, Andrew E. SmithWildfire-driven forest conversion in western North American landscapes
Changing disturbance regimes and climate can overcome forest ecosystem resilience. Following high-severity fire, forest recovery may be compromised by lack of tree seed sources, warmer and drier postfire climate, or short-interval reburning. A potential outcome of the loss of resilience is the conversion of the prefire forest to a different forest type or nonforest vegetation. Conversion implies mAuthorsJonathan D. Coop, Sean A. Parks, Camile S Stevens-Rumann, Shelley D. Crausbay, Philip E. Higuera, Matthew D. Hurteau, Alan J. Tepley, Ellen Whitman, Timothy J Assal, Brandon M. Collins, Kimberley T Davis, Solomon Dobrowski, Donald A. Falk, Paula J. Fornwalt, Peter Z Fulé, Brian J. Harvey, Van R. Kane, Caitlin E. Littlefield, Ellis Margolis, Malcolm North, Marc-André Parisien, Susan Prichard, Kyle C. Rodman - News
Below are news stories associated with this project.
- Partners
Below are partners associated with this project.
Filter Total Items: 14