Skip to main content
U.S. flag

An official website of the United States government

Advanced Research

Much of the work of the New England Water Science Center combines traditional hydrology with advanced scientific methods to produce innovative and defensible science. Partnering with researchers from a variety of disciplines leverages our science more than ever. We are always striving to innovate new scientific methods and adapt to constantly changing environmental landscapes.  

Filter Total Items: 20

Water Cycle Center

The Water Cycle Center is a cooperation between U.S. Geological Survey and academic partners in the Northeast that studies complete water cycles and watersheds, from mountaintops to shorelines, concentrating on freshwater ecosystems. This research advances the understanding of processes that determine water availability and is needed to best address future water resource challenges.
link

Water Cycle Center

The Water Cycle Center is a cooperation between U.S. Geological Survey and academic partners in the Northeast that studies complete water cycles and watersheds, from mountaintops to shorelines, concentrating on freshwater ecosystems. This research advances the understanding of processes that determine water availability and is needed to best address future water resource challenges.
Learn More

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
link

Long Island Sound Spatially Referenced Regressions on Watershed Attributes (SPARROW) Models

The U.S. Geological Survey, New England Water Science Center, in collaboration with the U.S. Environmental Protection Agency (EPA), is modeling seasonal nutrient loads to Long Island Sound (LIS). Nutrients that originate from within the 41,867-square-mile section of the LIS watershed that is north of the Sound include both point (specific) and nonpoint (widespread) sources. Dynamic modeling of the...
Learn More

Effectiveness of Open-Graded Friction Course Pavement in Reducing Suspended-Sediment Loads Discharged from Massachusetts Highways

The U.S. Geological Survey New England Water Science Center, in cooperation with Massachusetts Department of Transportation (MassDOT), is evaluating how a type of porous pavement affects the discharge of suspended sediment in comparison to the asphalt surface commonly used on Massachusetts highways. The project will expand the understanding of highway runoff concentrations of suspended sediment...
link

Effectiveness of Open-Graded Friction Course Pavement in Reducing Suspended-Sediment Loads Discharged from Massachusetts Highways

The U.S. Geological Survey New England Water Science Center, in cooperation with Massachusetts Department of Transportation (MassDOT), is evaluating how a type of porous pavement affects the discharge of suspended sediment in comparison to the asphalt surface commonly used on Massachusetts highways. The project will expand the understanding of highway runoff concentrations of suspended sediment...
Learn More

Characterizing Future Climate and Hydrology in Massachusetts using Stochastic Modeling Methods

Communities across Massachusetts may face potential consequences of climate change, ranging from more extreme rainfall to more pronounced and frequent droughts. Climate change could alter the state’s hydrology in potentially complex and unanticipated ways. Typical approaches for projecting hydrologic risk under climate change can misrepresent and underestimate the variability of climate and...
link

Characterizing Future Climate and Hydrology in Massachusetts using Stochastic Modeling Methods

Communities across Massachusetts may face potential consequences of climate change, ranging from more extreme rainfall to more pronounced and frequent droughts. Climate change could alter the state’s hydrology in potentially complex and unanticipated ways. Typical approaches for projecting hydrologic risk under climate change can misrepresent and underestimate the variability of climate and...
Learn More

Research on Per- and Polyfluoroalkyl Substances (PFAS) in the New England Water Science Center

Per- and polyfluoroalkyl substances (PFAS) are a diverse group of over 4,000 different compounds. Since the 1940s, PFAS have been manufactured and used around the globe, including in the United States. PFAS are resistant to chemical and thermal breakdown and impart stain and water-resistance properties, making them useful for a variety of commercial applications, but also persistent in the...
link

Research on Per- and Polyfluoroalkyl Substances (PFAS) in the New England Water Science Center

Per- and polyfluoroalkyl substances (PFAS) are a diverse group of over 4,000 different compounds. Since the 1940s, PFAS have been manufactured and used around the globe, including in the United States. PFAS are resistant to chemical and thermal breakdown and impart stain and water-resistance properties, making them useful for a variety of commercial applications, but also persistent in the...
Learn More

Sleepers River Research Watershed

The Sleepers River Research Watershed in Danville, Vermont has been the site of active hydrologic research since 1959, when the Agricultural Research Service (ARS) of the U.S. Department of Agriculture (USDA) established a research program in the watershed. The Sleepers River site is now operated by the USGS, in cooperation with several other Federal agencies and universities.
link

Sleepers River Research Watershed

The Sleepers River Research Watershed in Danville, Vermont has been the site of active hydrologic research since 1959, when the Agricultural Research Service (ARS) of the U.S. Department of Agriculture (USDA) established a research program in the watershed. The Sleepers River site is now operated by the USGS, in cooperation with several other Federal agencies and universities.
Learn More

Hydrologic Monitoring in the Three Bays Watershed in Support of Nutrient Management Activities, Cape Cod, Massachusetts

In 2019 the USGS began a partnership with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD), EPA Region 1 Southeast New England Program for Coastal Watershed Restoration (SNEP), Barnstable Clean Water Coalition (BCWC), and other stakeholders to conduct hydrologic monitoring and assessment in support of multifaceted nutrient-management activities in the Three...
link

Hydrologic Monitoring in the Three Bays Watershed in Support of Nutrient Management Activities, Cape Cod, Massachusetts

In 2019 the USGS began a partnership with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD), EPA Region 1 Southeast New England Program for Coastal Watershed Restoration (SNEP), Barnstable Clean Water Coalition (BCWC), and other stakeholders to conduct hydrologic monitoring and assessment in support of multifaceted nutrient-management activities in the Three...
Learn More

Recharge Estimates for Maine: 25-year Average, Range, and Uncertainty, 1990-2015

The USGS Soil-Water-Balance model (SWB) has been used to estimate potential recharge across the State of Maine. The average and range (minimum and maximum) of annual recharge were estimated for the 25-year period from 1990 to 2015. Datasets of estimated recharge and the modeled uncertainty in the recharge estimates are available for download.
link

Recharge Estimates for Maine: 25-year Average, Range, and Uncertainty, 1990-2015

The USGS Soil-Water-Balance model (SWB) has been used to estimate potential recharge across the State of Maine. The average and range (minimum and maximum) of annual recharge were estimated for the 25-year period from 1990 to 2015. Datasets of estimated recharge and the modeled uncertainty in the recharge estimates are available for download.
Learn More

Assessment of Potential Effects of Water-Supply Withdrawals on Groundwater Levels near the Hyannis Ponds Complex, Barnstable, Massachusetts

The USGS, in cooperation with the Town of Barnstable and MassWildlife, is assessing the potential effects of new water-supply withdrawals on groundwater levels in the Hyannis Ponds Wildlife Management Area on Cape Cod. A groundwater-flow model is being used to simulate the effects of several possible withdrawal and wastewater-return flow scenarios developed by the Town of Barnstable and...
link

Assessment of Potential Effects of Water-Supply Withdrawals on Groundwater Levels near the Hyannis Ponds Complex, Barnstable, Massachusetts

The USGS, in cooperation with the Town of Barnstable and MassWildlife, is assessing the potential effects of new water-supply withdrawals on groundwater levels in the Hyannis Ponds Wildlife Management Area on Cape Cod. A groundwater-flow model is being used to simulate the effects of several possible withdrawal and wastewater-return flow scenarios developed by the Town of Barnstable and...
Learn More

Hydrologic Site Assessment for Passive Treatment of Groundwater Nitrogen with Permeable Reactive Barriers, Cape Cod, Massachusetts

In 2019 USGS completed a study designed to develop and evaluate a phased site-assessment approach for determining the hydrologic suitability of sites being considered for permeable reactive barrier installation on Cape Cod. The approach provides a template for town officials and other stakeholders to follow when considering PRBs for passive treatment of nitrogen in groundwater on Cape Cod and...
link

Hydrologic Site Assessment for Passive Treatment of Groundwater Nitrogen with Permeable Reactive Barriers, Cape Cod, Massachusetts

In 2019 USGS completed a study designed to develop and evaluate a phased site-assessment approach for determining the hydrologic suitability of sites being considered for permeable reactive barrier installation on Cape Cod. The approach provides a template for town officials and other stakeholders to follow when considering PRBs for passive treatment of nitrogen in groundwater on Cape Cod and...
Learn More

The Purge Analyzer Tool (PAT) to Assess Optimal Pumping Parameters in the Collection of Representative Groundwater Samples from Wells

The U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency is developing analytical models to assess in-well groundwater flow conditions during the collection of groundwater samples from wells being pumped. This information can be used to inform groundwater samplers on when and how to collect samples that are most reflective of the targeted aquifer or hydrogeologiic...
link

The Purge Analyzer Tool (PAT) to Assess Optimal Pumping Parameters in the Collection of Representative Groundwater Samples from Wells

The U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency is developing analytical models to assess in-well groundwater flow conditions during the collection of groundwater samples from wells being pumped. This information can be used to inform groundwater samplers on when and how to collect samples that are most reflective of the targeted aquifer or hydrogeologiic...
Learn More

Updating a Method to Estimate Probable High Groundwater Levels in Massachusetts

Periodic high groundwater levels are a major cause of septic system-failures, wet basements, and other problems for suburban and rural residents in Massachusetts. To address this issue, a method (commonly referred to as the Frimpter method) was developed in early 1980’s to estimate probable high groundwater levels across the state. The USGS New England Water Science Center, in cooperation with the...
link

Updating a Method to Estimate Probable High Groundwater Levels in Massachusetts

Periodic high groundwater levels are a major cause of septic system-failures, wet basements, and other problems for suburban and rural residents in Massachusetts. To address this issue, a method (commonly referred to as the Frimpter method) was developed in early 1980’s to estimate probable high groundwater levels across the state. The USGS New England Water Science Center, in cooperation with the...
Learn More
Was this page helpful?