My interests span the coastal zone, from seacliff erosional processes to sediment dynamics in the shallow coastal ocean. My research focuses on the quantitative study of hydrodynamics, sediment transport, and geomorphology in coastal and marine environments.
Research Topics
Coral reef morphology, hydrodynamics, and sediment, nutrient, contaminant, and larval transport
The role of coral reefs and other coastal ecosystems in coastal hazard risk reduction
The interplay between geologic structure, climatic fluctuations, and coastal processes
High-resolution oceanographic instrumentation and coastal mapping techniques
The influence of physical processes on coral reef ecosystems
Many tropical coastal environments have been impacted by infrastructure development, nutrient and contaminant delivery, and natural and human-induced sedimentation. The high geomorphic and hydrodynamic complexity both within and between coral reefs, in conjunction with past technical restrictions, has limited our understanding of the nature of flow and the resulting flux of physical, chemical, and biologic material in these ecosystems. Understanding the physical controls on the timing and magnitude of flow and sediment, larvae, nutrient, and contaminant transport, along with their impact on seafloor geomorphology, stability, and sedimentation in these refugia are essential to assessing modern anthropogenic impacts (climate change, etc.) on these ecosystems and help guide how restoration can increase the resiliency of coral reef-lined coastal communities.
See: Coral Reef Project and The Value of U.S. Coral Reefs for Risk Reduction (links below)
The influence of climate change and sea-level rise on coral reef-lined coasts
Observations show that sea level is rising and recent projections indicate sea level will exceed 1.0 m, and may reach 2.0 m, above 2000 levels by the end of the 21st century. The amount of land and water available for human habitation, water and food sources, and ecosystems along coral reef-lined coasts is limited and vulnerable to wave-driven flooding during storms. Rising sea levels will further exacerbate the impacts of storms on coral reef-lined coasts by reducing wave breaking (and thus energy dissipation) over reefs and result in greater wave energy impacting the shoreline, causing increased flooding and changes to the coast such as erosion. Understanding the physical controls on the timing and magnitude of flooding, along with their impact on coastal geomorphology, are essential to assessing impacts on, and the future sustainability of, coastal infrastructure, agriculture, freshwater availability, and ecosystems.
See: Low-lying areas of tropical Pacific islands (links below)
Professional Experience
2002-present: Research Geologist and Oceanographer, USGS Coastal and Marine Hazards and Resources Program
2002-present: Research Associate, University of California at Santa Cruz (UCSC) Institute for Marine Sciences
Education and Certifications
2002-2004: Research Fellow, Partnership for Interdisciplinary Studies of Coastal Oceans Consortium
2000-2002: Post-doctoral Researcher, UCSC Institute for Marine Sciences
2000: Ph.D., UCSC, Earth Sciences Department
1996: B.Sc., University of Delaware, Geology Department
Science and Products
Coral Reef Project
Coastal Climate Impacts
Reef Hydrodynamics and Sediment Processes
Reef Resource Assessments - Planning for the Future
Low-lying areas of tropical Pacific islands
Role of Reefs in Coastal Protection
The Impact of Sea-Level Rise and Climate Change on Pacific Ocean Atolls
Coral Reef Project: Kwajalein Island
Coral Reef Project: Roi-Namur Island
Coral Reef Project: Molokaʻi
Coral Reef Project: Maui
Using Video Imagery to Study Wave Dynamics: Tres Palmas
OpenFOAM models of low- and high-relief sites from the coral reef flat off Waiakane, Molokai, Hawaii
3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai
Model parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii
Model parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument
Time-series data of water surface elevation, waves, currents, temperature, and turbidity collected between November 2017 and March 2018 off the west coast of Maui, Hawaii, USA
Hydrographic and sediment field data collected in the vicinity of Wainwright, Alaska, in 2009
Pharmaceuticals and personal care products measured in passive samplers at seven coastal sites off West Maui during February and March 2017
National Assessment of Hurricane-Induced Coastal Erosion Hazards: Puerto Rico
Ocean wave time-series data simulated with a global-scale numerical wave model under the influence of projected CMIP6 wind and sea ice fields
Model parameter input files to compare the influence of channels in fringing coral reefs on alongshore variations in wave-driven runup along the shoreline
Aerial imagery and structure-from-motion-derived shallow water bathymetry from a UAS survey of the coral reef off Waiakane, Molokai, Hawaii, June 2018
Flooding extent polygons for modelled wave-driven water levels in Florida with and without projected coral reef degradation
Views of the Sea Floor in Northern Monterey Bay, California

What evidence exists on the ecological and physical effects of built structures in shallow, tropical coral reefs? A systematic map protocol
SaTSeaD: Satellite Triangulated Sea Depth open-source bathymetry module for NASA Ames Stereo Pipeline
Combining field observations and high-resolution numerical modeling to demonstrate the effect of coral reef roughness on turbulence and its implications for reef restoration design
HyWaves: Hybrid downscaling of multimodal wave spectra to nearshore areas
Coral restoration for coastal resilience: Integrating ecology, hydrodynamics, and engineering at multiple scales
The potential for coral reef restoration to mitigate coastal flooding as sea levels rise
Carbonate sediment transport across coral reefs: A comparison of fringing vs. barrier reefs
Modeling fluvial sediment plumes: Impacts to coral reefs
Wave-scale observations of sediment resuspension and subsequent transport across a fringing reef flat
Wave-scale observations of coarse-grained sediment resuspension and subsequent transport across a fringing reef flat, Molokaʻi, Hawaiʻi, USA
Observations of coastal circulation, waves, and sediment transport along West Maui, Hawaiʻi (November 2017– March 2018), and modeling effects of potential watershed restoration on decreasing sediment loads to adjacent coral reefs
Physicochemical coastal groundwater dynamics between Kauhakō Crater lake and Kalaupapa settlement, Moloka‘i, Hawai‘i
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Science and Products
- Science
Filter Total Items: 26
Coral Reef Project
Explore the fascinating undersea world of coral reefs. Learn how we map, monitor, and model coral reefs so we can better understand, protect, and preserve our Nation's reefs.Coastal Climate Impacts
The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal...Reef Hydrodynamics and Sediment Processes
As part of the USGS Coral Reef Project, the overall objective of this research effort is to better understand how circulation and sediment processes impact coral reefs and their adjacent coastlines.Reef Resource Assessments - Planning for the Future
We are mapping and assessing all of the important geologic and oceanographic factors to identify those coral reefs most at risk and those reefs that are potentially the most resilient and the most likely to recover from natural and human-driven impacts.Low-lying areas of tropical Pacific islands
Sea level is rising faster than projected in the western Pacific, so understanding how wave-driven coastal flooding will affect inhabited, low-lying islands—most notably, the familiar ring-shaped atolls—as well as the low-elevation areas of high islands in the Pacific Ocean, is critical for decision-makers in protecting infrastructure or relocating resources and people.Role of Reefs in Coastal Protection
We are combining ocean, engineering, ecologic, social, and economic modeling to provide a high-resolution, rigorous, spatially-explicit valuation of the coastal flood protection benefits provided by coral reefs and the cost effectiveness of reef restoration for enhancing those benefits.The Impact of Sea-Level Rise and Climate Change on Pacific Ocean Atolls
Providing basic understanding and specific information on storm-wave inundation of atoll islands that house Department of Defense installations, and assessing the resulting impact of sea-level rise and storm-wave inundation on infrastructure and freshwater availability under a variety of sea-level rise and climatic scenarios.Coral Reef Project: Kwajalein Island
The USGS is working to provide a better understanding of how spatially-varying atoll morphology and coral cover interact with changes in water level to affect the propagation of waves of different heights and wavelengths across atoll reefs.Coral Reef Project: Roi-Namur Island
The USGS is working to provide a better understanding of how spatially-varying atoll morphology and coral cover interact with changes in water level to affect the propagation of waves of different heights and wavelengths across atoll reefs.Coral Reef Project: Molokaʻi
As part of the USGS Coral Reef Project, recent USGS work on Molokaʻi includes looking into the coral record to find clues to past sedimentation events.Coral Reef Project: Maui
As part of USGS Coral Reef Project studies, the USGS has been heavily involved in efforts to improve the health and resilience of Maui's coral reef system, bringing expertise in mapping, circulation and sediment studies, and seismic surveys.Using Video Imagery to Study Wave Dynamics: Tres Palmas
To study wave dynamics along an active coastline, video cameras were installed on the west coast of Puerto Rico at Tres Palmas in Rincón. - Data
Filter Total Items: 40
OpenFOAM models of low- and high-relief sites from the coral reef flat off Waiakane, Molokai, Hawaii
OpenFOAM Computational Fluid Dynamics (CFD) models were developed to simulate wave energy dissipation across natural rough reef surfaces on the reef flat off Waiakane, Molokai, Hawaii, to understand this process in the context of reef restoration design. A total of 140 models were developed (70 per low- and 70 per high-bed-relief domains). Models were calibrated and validated with oceanographic da3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai
3D bathymetric surfaces of low- and high-relief sites from the coral reef flat off Waiakane, Molokai, were created using structure-from-motion (SfM) techniques. The two study sites are located approximately 640 m from shore and approximately 20 m apart in the alongshore direction. At each site, an approximate 12-meter diameter area was imaged in three passes by a swimmer using a handheld digital cModel parameter input files to compare effects of stream discharge scenarios on sediment deposition and concentrations around coral reefs off west Maui, Hawaii
This dataset consists of physics-based Delft3D model and Delwaq model input files used in modeling sediment deposition and concentrations around the coral reefs of west Maui, Hawaii. The Delft3D models were used to simulate waves and currents under small (SC1) and large (‘SC2’) wave conditions for current stream discharge (‘Alt1’) and stream discharge with watershed restoration (‘Alt3’). Delft3D mModel parameter input files to compare the influence of coral reef carbonate budgets on alongshore variations in wave-driven total water levels on Buck Island Reef National Monument
A set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate how varying carbonate budgets, and thus coral reef accretion and degradation, affect alongshore variations in wave-driven water levels along the adjacent shoreline of Buck Island Reef National Monument (BUIS) for a number of sea-level rise scenarios, specifically duriTime-series data of water surface elevation, waves, currents, temperature, and turbidity collected between November 2017 and March 2018 off the west coast of Maui, Hawaii, USA
Time-series data of water surface elevation, waves, currents, temperature, and turbidity collected between November 2017 and March 2018 off the west coast of Maui, Hawaii, USA. The data are available in NetCDF format, grouped together in zip files by instrument site location. These data support a modeling study on the effects of potential watershed restoration on decreasing sediment loads to adjacHydrographic and sediment field data collected in the vicinity of Wainwright, Alaska, in 2009
This dataset consists of hydrographic, geomorphic, and sediment field measurements obtained during the ice-free summer of 2009 in the vicinity of Wainwright, Alaska. Time-series data were collected with a bottom-mounted instrument package and consist of wave statistics, vertical water flow velocity profiles, water temperatures, conductivity, and salinity concentrations. Data collected at distinctPharmaceuticals and personal care products measured in passive samplers at seven coastal sites off West Maui during February and March 2017
Passive membrane samplers—semipermeable membrane devices and polar organic chemical integrative samplers—were deployed for 22 continuous days at 7 sites along the West Maui, Hawai'i, coastline in February and March 2017 to assess organic contaminants at shallow coral reef ecosystems from diverse upstream inputs.National Assessment of Hurricane-Induced Coastal Erosion Hazards: Puerto Rico
These datasets contain information on the probabilities of hurricane-induced erosion (collision, inundation, and overwash) for each 100-meter (m) section of the Puerto Rico open-ocean coastline for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model (Sallenger, 2000; https://www.jstor.org/stable/4300099) that uses observations of beach morphology combined with sophisticaOcean wave time-series data simulated with a global-scale numerical wave model under the influence of projected CMIP6 wind and sea ice fields
This dataset contains projected hourly time-series data of waves at distinct points along all open U.S. coasts for years 2020-2050. The 'projections' (estimates of long-term future conditions) were developed by running the National Oceanic and Atmospheric Administration's (NOAA) WAVEWATCHIII wave model forced with winds and sea ice cover from seven separate high-resolution Global Climate / GeneralModel parameter input files to compare the influence of channels in fringing coral reefs on alongshore variations in wave-driven runup along the shoreline
An extensive set of physics-based XBeach Non-hydrostatic hydrodynamic model simulations (with input files here included) were used to evaluate the influence of shore-normal reef channels on flooding along fringing reef-lined coasts, specifically during extreme wave conditions when the risk for coastal flooding and the resulting impact to coastal communities is greatest. These input files accompanyAerial imagery and structure-from-motion-derived shallow water bathymetry from a UAS survey of the coral reef off Waiakane, Molokai, Hawaii, June 2018
An unoccupied aerial system (UAS) was used to acquire high-resolution imagery of the shallow fringing coral reef at Waiakane, Molokai, Hawaii, on 24 June 2018. Imagery was acquired over an area between the shoreline and approximately 900 meters offshore, covering approximately 16 hectares. The imagery was processed using structure-from-motion (SfM) photogrammetric techniques with additional refracFlooding extent polygons for modelled wave-driven water levels in Florida with and without projected coral reef degradation
This data release presents projected flooding extent polygon (flood masks) shapefiles based on wave-driven total water levels for the State Florida (the Florida Peninsula and the Florida Keys). There are 12 associated flood mask shapefiles: one for each of four nearshore wave energy return periods (rp; 10-, 50-, 100-, and 500-years), the current scenario (base) and each of the degradation scenario - Maps
Views of the Sea Floor in Northern Monterey Bay, California
A sonar survey that produced unprecedented high-resolution images of the sea floor in northern Monterey Bay was conducted in 2005 and 2006. The survey, performed over 14 days by the U.S. Geological Survey (USGS), consisted of 172 tracklines and over 300 million soundings and covered an area of 12.2 km2 (4.7 mi2). The goals of this survey were to collect high-resolution bathymetry (depth to the sea - Multimedia
Filter Total Items: 26USGS Research Geologist Curt Storlazzi from the Pacific Coastal and Marine Science Center presented with the USCRTF Scientific Achievement Award
- Publications
Filter Total Items: 187
What evidence exists on the ecological and physical effects of built structures in shallow, tropical coral reefs? A systematic map protocol
BackgroundShallow, tropical coral reefs face compounding threats from habitat degradation due to coastal development and pollution, impacts from storms and sea-level rise, and pulse disturbances like blast fishing, mining, dredging, and ship groundings that reduce coral reefs’ height and variability. One approach toward restoring coral reef structure from these threats is deploying built structureAuthorsAvery Paxton, Tom Swannack, Candice Piercy, Safra Altman, Leanne Poussard, Brandon Puckett, Curt Storlazzi, T. Shay ViehmanSaTSeaD: Satellite Triangulated Sea Depth open-source bathymetry module for NASA Ames Stereo Pipeline
We developed the first-ever bathymetric module for the NASA Ames Stereo Pipeline (ASP) open-source topographic software called Satellite Triangulated Sea Depth, or SaTSeaD, to derive nearshore bathymetry from stereo imagery. Correct bathymetry measurements depend on water surface elevation, and whereas previous methods considered the water surface horizontal, our bathymetric module accounts for thAuthorsMonica Palaseanu-Lovejoy, Oleg Alexandrov, Jeffrey J. Danielson, Curt StorlazziCombining field observations and high-resolution numerical modeling to demonstrate the effect of coral reef roughness on turbulence and its implications for reef restoration design
Coral reefs are effective natural barriers that protect adjacent coastal communities from hazards such as erosion and storm-induced flooding. However, the degradation of coral reefs compromises their ability to protect against these hazards, making degraded reefs a target for restoration. There have been limited field and numerical modeling studies conducted to understand how an increase in coralAuthorsBenjamin K Norris, Curt Storlazzi, Andrew W. M. Pomeroy, Kurt J. Rosenberger, Joshua B. Logan, Olivia CheritonHyWaves: Hybrid downscaling of multimodal wave spectra to nearshore areas
Long-term and accurate wave hindcast databases are often required in different coastal engineering projects. The assessment of the nearshore wave climate is often accomplished by using downscaling techniques to translate offshore waves to coastal areas. However, dynamical downscaling approaches may incur huge computational cost. Additionally, the common use of bulk parameterizations are often notAuthorsAlba Ricondo, Laura Cagigal, Ana Rueda, Ron Hoeke, Curt Storlazzi, Fernando MenendezCoral restoration for coastal resilience: Integrating ecology, hydrodynamics, and engineering at multiple scales
The loss of functional and accreting coral reefs reduces coastal protection and resilience for tropical coastlines. Coral restoration has potential for recovering healthy reefs that can mitigate risks from coastal hazards and increase sustainability. However, scaling up restoration to the large extent needed for coastal protection requires integrated application of principles from coastal engineerAuthorsT. Shay Viehman, Borja Reguero, Hunter Lenihan, Johanna H. Rosman, Curt Storlazzi, Elizabeth Goergen, Miguel F. Canals Silander, Sarah H. Groves, Daniel Holstein, Andrew Bruckner, Jane Carrick, Brian Haus, Julia Royster, Melissa Duvall, Walter Torres, Jim HenchThe potential for coral reef restoration to mitigate coastal flooding as sea levels rise
The ability of reefs to protect coastlines from storm-driven flooding hinges on their capacity to keep pace with sea-level rise. Here, we show how and whether coral restoration could achieve the often-cited goal of reversing the impacts of coral-reef degradation to preserve this essential function. We combined coral-growth measurements and carbonate-budget assessments of reef-accretion potential aAuthorsLauren Toth, Curt Storlazzi, Elizabeth M. Whitcher, Ilsa B. Kuffner, Ellen Quataert, Johan Reyns, Robert T. McCall, Anastasios Stathakopoulos, Zandy Hillis-Starr, Nathaniel H. Holloway, Kristin A. Ewen, Clayton G. Pollock, Tess Code, Richard B. AronsonCarbonate sediment transport across coral reefs: A comparison of fringing vs. barrier reefs
Considerable uncertainty remains in the budgets of carbonate sediment on reef lined coasts, particularly with respect to the supply of sediment to a reef flat that is then transported throughout a reef system. In this study, we re-examine two recent studies, one on a barrier reef bounded by channels that incise the reef, and one on a fringing reef without channels. Results indicate that the presenAuthorsKurt J. Rosenberger, Curt Storlazzi, Olivia Cheriton, Mark L. Buckley, Andrew Pomeroy, Ryan Lowe, Jeff HansenModeling fluvial sediment plumes: Impacts to coral reefs
To help guide watershed restoration to reduce the impacts to adjacent coral reefs, the United States Geological Survey and Deltares acquired and analyzed oceanographic and sedimentologic data off 5 West Maui watersheds to calibrate and validate physics-based, numerical hydrodynamic and sediment transport models of the study area. The results indicated sheltered sites are impacted by terrestrial seAuthorsCurt Storlazzi, Luuk van der Heijden, Olivia Cheriton, Robert T. McCall, Gundula WinterWave-scale observations of sediment resuspension and subsequent transport across a fringing reef flat
During a 3-month deployment on a broad, fringing reef flat in Moloka’i, Hawai’i, we observed over 28,000 wave-driven resuspension (WDR) events of coarse-grained sediment in order to identify major factors. These events were short-lived (2-11 s) and distinct from the longer-duration patterns of water-column backscatter. The wave-driven transport of WDR events was onshore, but the net cross-shore trAuthorsOlivia Cheriton, Curt Storlazzi, Kurt J. Rosenberger, Joshua B. Logan, Andrew W. M. Pomeroy, Mark L. Buckley, Jeff E. Hansen, Ryan J. LoweWave-scale observations of coarse-grained sediment resuspension and subsequent transport across a fringing reef flat, Molokaʻi, Hawaiʻi, USA
During a 3-month deployment on a broad, fringing reef flat in Moloka’i, Hawai’i, we observed over 28,000 wave-driven resuspension (WDR) events of coarse-grained sediment in order to identify major factors. These events were short-lived (2-11 s) and distinct from the longer-duration patterns of water-column backscatter. The wave-driven transport of WDR events was onshore, but the net cross-shore trAuthorsOlivia Cheriton, Curt Storlazzi, Kurt J. Rosenberger, Joshua B. Logan, Andrew W. M. Pomeroy, Mark L. Buckley, Jeff E. Hansen, Ryan J. LoweObservations of coastal circulation, waves, and sediment transport along West Maui, Hawaiʻi (November 2017– March 2018), and modeling effects of potential watershed restoration on decreasing sediment loads to adjacent coral reefs
Terrestrial sediment discharging from watersheds off West Maui, Hawaiʻi, has been documented as a primary stressor to local coral reefs, causing coral reef health to decline. The U.S. Geological Survey acquired and analyzed physical oceanographic and sedimentologic field data off the coast of West Maui to calibrate and validate physics-based, numerical hydrodynamic and sediment transport models ofAuthorsCurt D. Storlazzi, Olivia M. Cheriton, Katherine M. Cronin, Luuk H. van der Heijden, Gundula Winter, Kurt J. Rosenberger, Joshua B. Logan, Robert T. McCallPhysicochemical coastal groundwater dynamics between Kauhakō Crater lake and Kalaupapa settlement, Moloka‘i, Hawai‘i
Land-based sources of groundwater pollution can be a critical threat to coral reefs, and a better understanding of “ridge-to-reef” water movement is required to advance management and coral survival in the Anthropocene. In this study a more complete understanding of the geological, atmospheric, and oceanic drivers behind coastal groundwater exchange on the Kalaupapa peninsula, on Moloka‘i, Hawai‘iAuthorsFerdinand Oberle, Olivia Cheriton, Peter W Swarzenski, Eric K. Brown, Curt D. StorlazziNon-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
- News
Filter Total Items: 19