Patrick is the Research Director for the Climate Impacts and Coastal Processes Team, which includes overseeing the development and application of the Coastal Storm Modeling System (CoSMoS), coastal monitoring and process-based studies of beaches across California, and research investigating the link between climate variability and coastal hazards across the Pacific Ocean basin.
Dr. Patrick Barnard has been a coastal geologist with the USGS Pacific Coastal and Marine Science Center in Santa Cruz since 2003, and is the Research Director of the Climate Impacts and Coastal Processes Team. His research focuses on storm- and climate-related changes to the beaches and estuaries bordering the Pacific Ocean. His research has been published in over 80 peer-reviewed scientific papers, including Nature, and presented over 100 times at scientific conferences and universities. He serves on numerous regional, national and international scientific review panels related to climate change and coastal hazards. He received a BA from Williams College, MS from University of South Florida, and PhD from UC Riverside.
Science and Products
Coastal Climate Impacts
Dynamic coastlines along the western U.S.
Climate impacts on Monterey Bay area beaches
PS-CoSMoS: Puget Sound Coastal Storm Modeling System
Coastal Storm Modeling System (CoSMoS)
CoSMoS-Groundwater
CoSMoS 3.1: Central California
CoSMoS 3.0: Southern California
CoSMoS 2.2: Pt. Arena and Russian River
CoSMoS 2.1: San Francisco Bay
CoSMoS 2.0: North-central California (outer coast)
Operational CoSMoS model: San Francisco Bay
Projections of shoreline change for California due to 21st century sea-level rise
Future coastal hazards along the U.S. Atlantic coast
Future coastal hazards along the U.S. North and South Carolina coasts
Coastal Storm Modeling System (CoSMoS) for Northern California 3.2 (ver. 1d, June 2023)
Ocean wave time-series data simulated with a global-scale numerical wave model under the influence of projected CMIP6 wind and sea ice fields
Modeled extreme total water levels along the U.S. west coast
Coastal Storm Modeling System (CoSMoS) for Central California, v3.1
California shorelines and shoreline change data, 1998-2016
Projected responses of the coastal water table for California using present-day and future sea-level rise scenarios
Coastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2
Beach topography and nearshore bathymetry of northern Monterey Bay, California
Near-surface wind fields for San Francisco Bay--historical and 21st-century projected time series
Under the Golden Gate Bridge — Views of the sea floor near the entrance to San Francisco Bay, California
The influence of vegetated marshes on wave transformation in sheltered estuaries
A model integrating satellite-derived shoreline observations for predicting fine-scale shoreline response to waves and sea-level rise across large coastal regions
Relative contributions of water-level components to extreme water levels along the US Southeast Atlantic Coast from a regional-scale water-level hindcast
Rapid modeling of compound flooding across broad coastal regions and the necessity to include rainfall driven processes: A case study of Hurricane Florence (2018)
Earth science looks to outer space
The future of coastal monitoring through satellite remote sensing
An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California
Advanced quantitative precipitation information: Improving monitoring and forecasts of precipitation, streamflow, and coastal flooding in the San Francisco Bay area
Measuring and attributing sedimentary and geomorphic responses to modern climate change: Challenges and opportunities
Characterizing storm-induced coastal change hazards along the United States West Coast
Global and regional sea level rise scenarios for the United States
Digital Twin Earth - Coasts: Developing a fast and physics-informed surrogate model for coastal floods via neural operators
Non-USGS Publications**
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Our Coast Our Future
Our Coast, Our Future is a partnership between Point Blue Conservation Science and USGS Pacific Coastal and Marine Science Center, and was collaboratively developed with many local, state, and federal stakeholders. It is the platform for data visualization, synthesis, and download of all output products from the USGS Coastal Storm Modeling System (CoSMoS).
Future Coastal Flooding
Prediction of Flooding Now and Into the Future: a geonarrative on coastal storms
Science and Products
- Science
Filter Total Items: 15
Coastal Climate Impacts
The impacts of climate change and sea-level rise around the Pacific and Arctic Oceans can vary tremendously. Thus far the vast majority of national and international impact assessments and models of coastal climate change have focused on low-relief coastlines that are not near seismically active zones. Furthermore, the degree to which extreme waves and wind will add further stress to coastal...Dynamic coastlines along the western U.S.
The west coast of the United States is extremely complex and changeable because of tectonic activity, mountain building, and land subsidence. These active environments pose a major challenge for accurately assessing climate change impacts, since models were historically developed for more passive sandy coasts.Climate impacts on Monterey Bay area beaches
For beach towns around Monterey Bay, preserving the beaches by mitigating coastal erosion is vital. Surveys conducted now and regularly in the future will help scientists understand the short- and long-term impacts of climate change, El Niño years, and sea-level rise on a populated and vulnerable coastline.PS-CoSMoS: Puget Sound Coastal Storm Modeling System
The CoSMoS model is currently available for most of the California coast and is now being expanded to support the 4.5 million coastal residents of the Puget Sound region, with emphasis on the communities bordering the sound.Coastal Storm Modeling System (CoSMoS)
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions of storm-induced coastal flooding, erosion, and cliff failures over large geographic scales. CoSMoS was developed for hindcast studies, operational applications and future climate scenarios to provide emergency responders and coastal planners with critical storm-hazards information that can be used to increase public safety...CoSMoS-Groundwater
The USGS Coastal Storm Modeling System (CoSMoS) team has extensively studied overland flooding and coastal change due to rising seas and storms. Interactions with coastal stakeholders have elucidated another important question; will rising seas also intrude into coastal aquifers and raise groundwater tables? The CoSMoS-Groundwater (CoSMoS-GW) modeling effort seeks to provide initial insight into...CoSMoS 3.1: Central California
CoSMoS v3.1 for central California shows projections for future climate scenarios (sea-level rise and storms)CoSMoS 3.0: Southern California
CoSMoS 3.0 for southern California provides detailed predictions of coastal flooding due to both future sea-level rise and storms, integrated with predictions of long-term coastal evolution (beach changes and coastal cliff retreat) for the Southern California region, from Point Conception (Santa Barbara County) to Imperial Beach (San Diego County).CoSMoS 2.2: Pt. Arena and Russian River
Building on the initial work in the Bay Area and Outer Coast, CoSMoS 2.2 adds river flows to help users project combined river and coastal flooding along the northern California coast from Bodega Head to Point Arena.CoSMoS 2.1: San Francisco Bay
With primary support from the National Estuarine Research Reserve (NERR), CoSMoS is set-up within the San Francisco Bay as part of Our Coast Our Future (OCOF).CoSMoS 2.0: North-central California (outer coast)
Our Coast Our Future (OCOF) is a collaborative, user-driven project providing science-based decision-support tools to help coastal planners and emergency responders understand, visualize, and anticipate local impacts from sea-level rise (SLR) and storms in the San Francisco Bay region.Operational CoSMoS model: San Francisco Bay
The San Francisco Bay Coastal Flood Forecast pilot project is an operational CoSMoS model, part of a project funded by the California Department of Water Resources (CA-DWR) and NOAA’s Earth System Research Laboratory (ESRL). - Data
Filter Total Items: 14
Projections of shoreline change for California due to 21st century sea-level rise
This dataset contains projections of shoreline change and uncertainty bands across California for future scenarios of sea-level rise (SLR). Projections were made using the Coastal Storm Modeling System - Coastal One-line Assimilated Simulation Tool (CoSMoS-COAST), a numerical model run in an ensemble forced with global-to-local nested wave models and assimilated with satellite-derived shoreline (SFuture coastal hazards along the U.S. Atlantic coast
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms for three States (Florida, Georgia, and Virginia) along the Atlantic coast of the United States. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available science and with enough resolution to support a suite of different plannFuture coastal hazards along the U.S. North and South Carolina coasts
This product consists of several datasets that map future coastal flooding and erosion hazards due to sea level rise (SLR) and storms along the North and South Carolina coast. The SLR scenarios encompass a plausible range of projections by 2100 based on the best available, science and with enough resolution to support a suite of different planning horizons. The storm scenarios are derived with theCoastal Storm Modeling System (CoSMoS) for Northern California 3.2 (ver. 1d, June 2023)
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS 3.2 for Northern California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planneOcean wave time-series data simulated with a global-scale numerical wave model under the influence of projected CMIP6 wind and sea ice fields
This dataset contains projected hourly time-series data of waves at distinct points along all open U.S. coasts for years 2020-2050. The 'projections' (estimates of long-term future conditions) were developed by running the National Oceanic and Atmospheric Administration's (NOAA) WAVEWATCHIII wave model forced with winds and sea ice cover from seven separate high-resolution Global Climate / GeneralModeled extreme total water levels along the U.S. west coast
This dataset contains information on the probabilities of storm-induced erosion (collision, inundation and overwash) for each 100-meter (m) section of the United States Pacific coast for return period storm scenarios. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respondCoastal Storm Modeling System (CoSMoS) for Central California, v3.1
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level rise (SLR) scenarios. CoSMoS v3.1 for Central California shows projections for future climate scenarios (sea-level rise and storms) to provide emergency responders and coastal planneCalifornia shorelines and shoreline change data, 1998-2016
This data release contains mean high water (MHW) shorelines along the coast of California for the years 1998/2002, 2015, and 2016, extracted from Light Detection and Ranging (LiDAR) digital elevation models using ArcGIS. The Digital Shoreline Analysis System (DSAS) was used to calculate net shoreline movement (NSM) between the pre-El Nino (2015) and post-El Nino (2016) shorelines, as a proxy for sProjected responses of the coastal water table for California using present-day and future sea-level rise scenarios
Coastal groundwater levels (heads) can increase with sea level rise (SLR) where shallow groundwater floats on underlying seawater. In some areas coastal groundwater could rise almost as much as SLR, but where rising groundwater intersects surface drainage features, the increase will be less. Numerical modeling can provide insight into coastal areas that may be more or less vulnerable to hazards asCoastal Storm Modeling System (CoSMoS) for Southern California, v3.0, Phase 2
The Coastal Storm Modeling System (CoSMoS) makes detailed predictions (meter-scale) over large geographic scales (100s of kilometers) of storm-induced coastal flooding and erosion for both current and future sea-level-rise scenarios, as well as long-term shoreline change and cliff retreat. Resulting projections for future climate scenarios (sea-level rise and storms) provide emergency responders aBeach topography and nearshore bathymetry of northern Monterey Bay, California
This data release presents beach topography and nearshore bathymetry data from repeated surveys in northern Monterey Bay, California to document changes in shoreline position and coastal morphology as they relate to episodic (storms), seasonal, and interannual and longer (e.g. El Ni?o) processes. The ongoing monitoring program was initiated in October 2014 with semi-annual surveys performed in latNear-surface wind fields for San Francisco Bay--historical and 21st-century projected time series
To support Coastal Storm Modeling System (CoSMoS) in the San Francisco Bay (v2.1), time series of historical and 21st-century near-surface wind fields (eastward and northward wind arrays) were simulated throughout the Bay. While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave m - Maps
Under the Golden Gate Bridge — Views of the sea floor near the entrance to San Francisco Bay, California
San Francisco Bay in Northern California is one of the largest and most altered estuaries within the United States. The sea floor within the bay as well as at its entrance is constantly changing due to strong tidal currents, aggregate mining, dredge disposal, and the creation of new land using artificial fill. Understanding this dynamic sea floor is critical for addressing local environmental issu - Multimedia
- Publications
Filter Total Items: 120
The influence of vegetated marshes on wave transformation in sheltered estuaries
Assessing the influence of marshes on mitigating flooding along estuarine shorelines under the pressures of sea level rise requires understanding wave transformation across the marsh. A numerical model was applied to investigate how vegetated marshes influence wave transformation. XBeach non-hydrostatic (XB-NH) was calibrated and validated with high frequency pressure data from the marsh at ChinaAuthorsRae M. Taylor-Burns, Kees Nederhoff, Jessica R. Lacy, Patrick L. BarnardA model integrating satellite-derived shoreline observations for predicting fine-scale shoreline response to waves and sea-level rise across large coastal regions
Satellite-derived shoreline observations combined with dynamic shoreline models enable fine-scale predictions of coastal change across large spatiotemporal scales. Here, we present a satellite-data-assimilated, “littoral-cell”-based, ensemble Kalman-filter shoreline model to predict coastal change and uncertainty due to waves, sea-level rise (SLR), and other natural and anthropogenic processes. WeAuthorsSean Vitousek, Kilian Vos, Kristen D. Splinter, Li H. Erikson, Patrick L. BarnardRelative contributions of water-level components to extreme water levels along the US Southeast Atlantic Coast from a regional-scale water-level hindcast
A 38-year hindcast water level product is developed for the U.S. Southeast Atlantic coastline from the entrance of Chesapeake Bay to the southeast tip of Florida. The water level modelling framework utilized in this study combines a global-scale hydrodynamic model (Global Tide and Surge Model, GTSM-ERA5), a novel ensemble-based tide model, a parameterized wave setup model, and statistical correctiAuthorsKai Alexander Parker, Li H. Erikson, Jennifer Anne Thomas, Kees Nederhoff, Patrick L. Barnard, Sanne MuisRapid modeling of compound flooding across broad coastal regions and the necessity to include rainfall driven processes: A case study of Hurricane Florence (2018)
In this work, we show that large-scale compound flood models developed for North and South Carolina, USA, can skillfully simulate multiple drivers of coastal flooding as confirmed by measurements collected during Hurricane Florence (2018). Besides the accuracy of representing observed water levels, the importance of individual processes was investigated. We demonstrate that across the area of inteAuthorsTim Leijnse, Kees Nederhoff, Jennifer Anne Thomas, Kai Alexander Parker, Maarten van Ormondt, Li H. Erikson, Robert T. McCall, Ap van Dongeren, Andrea C. O'Neill, Patrick L. BarnardEarth science looks to outer space
Satellite data are revolutionizing coastal science. A study revealing how the El Niño/Southern Oscillation impacts coastal erosion around the Pacific Rim shows what is possible.AuthorsPatrick L. Barnard, Sean VitousekThe future of coastal monitoring through satellite remote sensing
Satellite remote sensing is transforming coastal science from a “data-poor” field into a “data-rich” field. Sandy beaches are dynamic landscapes that change in response to long-term pressures, short-term pulses, and anthropogenic interventions. Until recently, the rate and breadth of beach change have outpaced our ability to monitor those changes, due to the spatiotemporal limitations of our obserAuthorsSean Vitousek, Dan Buscombe, Kilian Vos, Patrick L. Barnard, Andrew C. Ritchie, Jonathan WarrickAn integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California
The increased risk of coastal flooding associated with climate-change driven sea level rise threatens to displace communities and cause substantial damage to infrastructure. Site-specific adaptation planning is necessary to mitigate the negative impacts of flooding on coastal residents and the built environment. Cost-benefit analyses used to evaluate coastal adaption strategies have traditionallyAuthorsKlaus Schroder, Michele A. Hummel, Kevin A. Befus, Patrick L. BarnardAdvanced quantitative precipitation information: Improving monitoring and forecasts of precipitation, streamflow, and coastal flooding in the San Francisco Bay area
Advanced Quantitative Precipitation Information (AQPI) is a synergistic project that combines observations and models to improve monitoring and forecasts of precipitation, streamflow, and coastal flooding in the San Francisco Bay area. As an experimental system, AQPI leverages more than a decade of research, innovation, and implementation of a statewide, state-of-the-art network of observations, aAuthorsRobert Cifelli, V Chandrasekar, Liv M. Herdman, Dave Turner, A. B. White, M. Alcott, M. C. Anderson, Patrick L. Barnard, S.K. Biswas, M. Boucher, J. Bytheway, H. Chen, H. Cutler, M. English, Li H. Erikson, F. Junyent, L. E. Johnson, J. Krebs, J. van de Lindt, J. Kim, Marty L. Leonard, Y. Ma, M. Marquis, W. Moninger, G. Pratt, C. Radhakrishnan, Michael Shields, J. Spaulding, Babak Tehranirad, R. S. WebbMeasuring and attributing sedimentary and geomorphic responses to modern climate change: Challenges and opportunities
Today, climate change is affecting virtually all terrestrial and nearshore settings. This commentary discusses the challenges of measuring climate-driven physical landscape responses to modern global warming: short and incomplete data records, land use and seismicity masking climatic effects, biases in data availability and resolution, and signal attenuation in sedimentary systems. We identify oppAuthorsAmy E. East, Jonathan Warrick, Dongfeng Li, Joel B. Sankey, Margaret H. Redsteer, Ann E. Gibbs, Jeffrey A. Coe, Patrick L. BarnardCharacterizing storm-induced coastal change hazards along the United States West Coast
Traditional methods to assess the probability of storm-induced erosion and flooding from extreme water levels have limited use along the U.S. West Coast where swell dominates erosion and storm surge is limited. This effort presents methodology to assess the probability of erosion and flooding for the U.S. West Coast from extreme total water levels (TWLs), but the approach is applicable to coastalAuthorsJames B. Shope, Li H. Erikson, Patrick L. Barnard, Curt Storlazzi, Katherine A. Serafin, Kara S. Doran, Hilary F. Stockdon, Borja G. Reguero, Fernando J. Mendez, Sonia Castanedo, Alba Cid, Laura Cagigal, Peter RuggieroGlobal and regional sea level rise scenarios for the United States
This report and accompanying datasets from the U.S. Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force provide 1) sea level rise scenarios to 2150 by decade that include estimates of vertical land motion and 2) a set of extreme water level probabilities for various heights along the U.S. coastline. These data are available at 1-degree grids along the U.S. coastlineAuthorsWilliam Sweet, Ben Hamlington, Robert E. Kopp, Christopher Weaver, Patrick L. Barnard, David Bekaert, William Brooks, Michael Craghan, Gregory Dusek, Thomas Frederikse, Gregory Garner, Ayesha S. Genz, John P. Krasting, Eric Larour, Doug Marcy, John J. Marra, Jayantha Obeysekera, Mark Osler, Matthew Pendleton, Daniel Roman, Lauren Schmied, Will Veatch, Kathleen D. White, Casey ZuzakDigital Twin Earth - Coasts: Developing a fast and physics-informed surrogate model for coastal floods via neural operators
Developing fast and accurate surrogates for physics-based coastal and ocean mod- els is an urgent need due to the coastal flood risk under accelerating sea level rise, and the computational expense of deterministic numerical models. For this purpose, we develop the first digital twin of Earth coastlines with new physics-informed machine learning techniques extending the state-of-art Neural OperatoAuthorsP. Jiang, N. Meinert, H. Jordão, C. Weisser, S. Holgate, A. Lavin, B. Lutjens, D. Newman, H. Wainright, C. Walker, Patrick L. BarnardNon-USGS Publications**
Barnard, P.L., Owen, L.A. and Finkel, R.C., 2004. Style and timing of glacial and paraglacial sedimentation in a monsoonal-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, Volume 165, p. 199-221, doi:10.1016/j.sedgeo.2003.11.009Barnard, P.L., Owen, L.A., Sharma, M.C. and Finkel, R.C., 2004. Late Quaternary (Holocene) landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology, Volume 61 (1-2), p. 91-110, doi:10.1016/j.geomorph.2003.12.002Barnard, P.L., 2003. The Timing and Nature of Glaciofluvial Erosion and Resedimentation in the Himalaya: the Role of Glacial and Paraglacial Processes in the Evolution of High Mountain Landscapes. Published Ph.D. Thesis, University of California, Riverside, 295 pp.Davis, R.A., Jr. and Barnard, P.L., 2003. Morphodynamics of the barrier-inlet system, west-central Florida. Marine Geology, Volume 200 (1-4), p. 77-101, doi:10.1016/S0025-3227(03)00178-6Finkel, R.C., Owen, L.A., Barnard, P.L. and Caffee, M.W., 2003. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoonal influence and glacial synchroneity throughout the Himalaya. Geology, Volume 31, p. 561-564, doi:10.1130/0091-7613(2003)031<0561:BDOMEM>2.0.CO;2Owen, L.A., Finkel, R.C., Ma, H., Spencer, J.Q., Derbyshire, E., Barnard, P.L. and Caffee, M.W., 2003. Timing and style of Late Quaternary glaciation in northeastern Tibet. Geological Society of America Bulletin, Volume 115 (11), p. 1356-1364, doi:10.1130/B25314.1Owen, L.A., Ma, H., Derbyshire, E., Spencer, J.Q., Barnard, P.L., Zeng, Y.N., Finkel, R.C. and Caffee, M.W., 2003. The timing and style of Late Quaternary glaciation in the La Ji Mountains, NE Tibet: evidence for restricted glaciation during the latter part of the Last Glacial. Zeitschrift für Geomorphologie, Supplemental Volume 130, p. 263-276, ISBN 978-3-443-21130-1Owen, L.A., Spencer, J.Q., Ma, H., Barnard, P.L., Derbyshire, E., Finkel, R.C., Caffee, M.W. and Zeng, Y.N., 2003. Timing of Late Quaternary glaciation along the southwestern slopes of the Qilian Shan, Tibet. Boreas, Volume 32, p. 281-291, doi:10.1111/j.1502-3885.2003.tb01083.xVan der Woerd, J., Owen, L.A., Tapponnier, P., Xiwei, X., Kervyn, F., Finkel, R.C. and Barnard, P.L., 2003. Giant, ~M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan, Northern Tibet: characteristics, nature and dynamics. Geological Society of America Bulletin, Volume 116 (3), p. 394-406, doi:10.1130/B25317.1Barnard, P.L., Owen, L.A., Sharma, M.C. and Finkel, R.C., 2001. Natural and human-induced landsliding in the Garhwal Himalaya of Northern India. Geomorphology, Volume 40, p. 21-35, doi:10.1016/S0169-555X(01)00035-6Davis, R.A., Jr. and Barnard, P.L., 2000. How anthropogenic factors in the back-barrier influence tidal inlet stability: examples from the Gulf Coast of Florida, USA. In: Pye, K. and Allen, J.R.L. (Eds.), Coastal and Estuarine Environments: sedimentology, geomorphology and geoarchaeology. Geological Society, London, Special Publication Number 175, p. 293-303, doi:10.1144/GSL.SP.2000.175.01.21Barnard, P.L. and Owen, L.A., 2000. A selected bibliography for Late Quaternary glaciation in Tibet and Bordering Mountains. Quaternary International, Volume 65/66, p. 193-212Barnard, P.L. and Davis, R.A., Jr., 1999. Anthropogenic vs. natural influences on inlet evolution: west-central Florida. Coastal Sediments ’99 Conference Proceedings, Fire Island, New York, Volume 2, p. 1489-1504Barnard, P.L., 1998. Historical Morphodynamics of Inlet Channels: West-Central Florida. Master’s Thesis, University of South Florida, 179 pp.**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
- Web Tools
Our Coast Our Future
Our Coast, Our Future is a partnership between Point Blue Conservation Science and USGS Pacific Coastal and Marine Science Center, and was collaboratively developed with many local, state, and federal stakeholders. It is the platform for data visualization, synthesis, and download of all output products from the USGS Coastal Storm Modeling System (CoSMoS).
Future Coastal Flooding
Prediction of Flooding Now and Into the Future: a geonarrative on coastal storms
- News
Filter Total Items: 21