Skip to main content
U.S. flag

An official website of the United States government


Browse more than 160,000 publications authored by our scientists over the past 100+ year history of the USGS.  Publications available are: USGS-authored journal articles, series reports, book chapters, other government publications, and more.

Filter Total Items: 170344

Opportunities and challenges for precipitation forcing data in post-wildfire hydrologic modeling applications

The frequency and extent of wildfires have increased in recent decades with immediate and cascading effects on water availability in many regions of the world. Precipitation is used as primary input to hydrologic models and is a critical driver of post-wildfire hydrologic hazards including debris flows, flash floods, water-quality effects, and reservoir sedimentation. These models are valuable too
Trevor Fuess Partridge, Zachary Johnson, Rachel Sleeter, Sharon L. Qi, Michelle A. Walvoord, Sheila F. Murphy, Cara L. Peterman-Phipps, Brian A. Ebel

Intercomparison of same-day remote sensing data for measuring winter cover crop biophysical traits

Winter cover crops are planted during the fall to reduce nitrogen losses and soil erosion and improve soil health. Accurate estimations of winter cover crop performance and biophysical traits including biomass and fractional vegetative groundcover support accurate assessment of environmental benefits. We examined the comparability of measurements between ground-based and spaceborne sensors as well
Alison Thieme, Kusuma Prabhakara, Jyoti Jennewein, Brian T Lamb, Gregory T. McCarty, W. Dean Hively

Versatile modeling of deformation (VMOD) inversion framework: Application to 20 years of observations at Westdahl Volcano and Fisher Caldera, Alaska, US

We developed an open source, extensible Python-based framework, that we call the Versatile Modeling of Deformation (VMOD), for forward and inverse modeling of crustal deformation sources. VMOD abstracts from specific source model implementations, data types and inversion methods. We implement the most common geodetic source models which can be combined to model and analyze multi-source deformation
Mario Angarita, Ronni Grapenthin, Scott Henderson, Michael S Christoffersen, Kyle R. Anderson

SSEBop evapotranspiration estimates using synthetically derived Landsat data from the continuous change detection and classification algorithm

The operational Simplified Surface Energy Balance (SSEBop) model has been utilized to generate gridded evapotranspiration data from Landsat images. These estimates are primarily driven by two sources of information: reference evapotranspiration and Landsat land surface temperature (LST) values. Hence, SSEBop is limited by the availability of Landsat data. Here, in this proof-of-concept paper, we u
Mikael Peter Hiestand, Heather J. Tollerud, W. Chris Funk, Gabriel B. Senay, Mackenzie Friedrichs, Kate Fickas

Using structured decision making to assess management alternatives to inform the 2024 update of the Minnesota Invasive Carp Action Plan

This report summarizes the results of a structured decision making process started by the Minnesota Department of Natural Resources to develop and evaluate various invasive carp management strategies to inform a 2024 update of the Minnesota Invasive Carp Action Plan. The Minnesota Department of Natural Resources invited State, Federal, Tribal, and nongovernmental organization partners to participa
Max Post van der Burg, Michael E. Colvin

Groundwater and surface-water interactions in the He‘eia watershed, O‘ahu, Hawai‘i—Insights from analysis of historical data and numerical groundwater-model simulations

He‘eia and ‘Ioleka‘a Streams in the He‘eia watershed on O‘ahu, Hawai‘i, receive substantial discharge from dike-impounded groundwater. Previous studies indicated that groundwater withdrawals from the watershed affect streamflow. Resource managers and users seek information that can be used to balance the needs of competing uses of groundwater and streamflow in the watershed.In this study, analyses
Scot K. Izuka, Heidi L. Kāne, Kolja Rotzoll

Existing evidence on the effects of climate variability and climate change on ungulates in North America: A systematic map

BackgroundClimate is an important driver of ungulate life-histories, population dynamics, and migratory behaviors. Climate conditions can directly impact ungulates via changes in the costs of thermoregulation and locomotion, or indirectly, via changes in habitat and forage availability, predation, and species interactions. Many studies have documented the effects of climate variability and climate
Kate Malpeli, Sarah C. Endyke, Sarah R. Weiskopf, Laura Thompson, Ciara G. Johnson, Katherine Anne Kurth, Maxfield A. Carlin

Evaluating the potential for efficient, UAS-based reach-scale mapping of river channel bathymetry from multispectral images

Introduction: Information on spatial patterns of water depth in river channels is valuable for numerous applications, but such data can be difficult to obtain via traditional field methods. Ongoing developments in remote sensing technology have enabled various image-based approaches for mapping river bathymetry; this study evaluated the potential to retrieve depth from multispectral images acquire
Carl J. Legleiter, Lee R. Harrison

Apparent non-double-couple components as artifacts of moment tensor inversion

Compilations of earthquake moment tensors from global and regional catalogs find pervasive non-double-couple (NDC) components with a mean deviation from a double-couple (DC) source of around 20%. Their distributions vary only slightly with magnitude, faulting mechanism, or geologic environments. This consistency suggests that for most earthquakes, especially smaller ones whose rupture processes ar
Boris Rösler, Seth Stein, Adam T. Ringler, Jiří Vackár

Preliminary implications of viscoelastic ray theory for anelastic seismic tomography models

The recent developments in general viscoelastic ray theory provide a rigorous mathematical framework for anelastic seismic tomography. They provide closed‐form solutions of forward ray‐tracing and simple inverse problems for anelastic horizontal and spherical layered media with material gradients. They provide ray‐tracing computation algorithms valid for all angles of incidence that account for ch
Roger D. Borcherdt

Groundwater hydrology, groundwater and surface-water interactions, aquifer testing, and groundwater-flow simulations for the Fountain Creek alluvial aquifer, near Colorado Springs, Colorado, 2018–20

From 2018 through 2020, the U.S. Geological Survey, in cooperation with the Air Force Civil Engineering Center, conducted an integrated study of the Fountain Creek alluvial aquifer located near Colorado Springs, Colorado. The objective of the study was to characterize hydrologic conditions for the alluvial aquifer pertinent to the potential for transport of solutes. Specific goals of this report w
Connor P. Newman, Cory A. Russell, Zachary D. Kisfalusi, Suzanne Paschke

Estimation and comparison of 1-percent annual exceedance probability flood flows at Federal Emergency Management Agency flood insurance study flow locations across Pennsylvania

Flood-flow estimates were computed at over 5,000 Federal Emergency Management Agency (FEMA) flood insurance study (FIS) flow locations across Pennsylvania for the 1-percent annual exceedance probability flood event (1-percent AEP). Depending on a point of interest’s proximity to a streamgage, weighting techniques may be applied to obtain flood-flow estimates for ungaged flow locations using observ
Mitchell R. Weaver, Marla H. Stuckey, James E. Colgin, Mark A. Roland