Skip to main content
U.S. flag

An official website of the United States government

Paleoclimate

Earth’s modern climate is influenced by a combination of natural climate variability, changing land cover, and greenhouse gas concentrations. The Ecosystems Land Change Science Program integrates geologic and instrumental climate to understand and anticipate potential timing and range of future change and the impacts on marine and terrestrial systems and society.

Filter Total Items: 27

How Science Helps Manage Changing Water Availability and Quality: Droughts, Floods, Avalanches and More

Droughts, floods, and avalanches are extreme events in the water cycle that can have catastrophic and lasting impacts on ecosystems and society. In addition to these extreme events, human changes to the landscape (including land use changes) can have substantial impacts on freshwater resources as well. Science from the USGS Ecosystems Land Change Science Program helps managers and decision-makers...
How Science Helps Manage Changing Water Availability and Quality: Droughts, Floods, Avalanches and More

How Science Helps Manage Changing Water Availability and Quality: Droughts, Floods, Avalanches and More

Droughts, floods, and avalanches are extreme events in the water cycle that can have catastrophic and lasting impacts on ecosystems and society. In addition to these extreme events, human changes to the landscape (including land use changes) can have substantial impacts on freshwater resources as well. Science from the USGS Ecosystems Land Change Science Program helps managers and decision-makers...
Learn More

Research Enhancing Park Recreation and Tourism

Scientists from the USGS Ecosystems Land Change Science Program work hand-in-hand with park managers to support abundant and enduring outdoor recreation and tourism opportunities in the Nation’s national parks.
Research Enhancing Park Recreation and Tourism

Research Enhancing Park Recreation and Tourism

Scientists from the USGS Ecosystems Land Change Science Program work hand-in-hand with park managers to support abundant and enduring outdoor recreation and tourism opportunities in the Nation’s national parks.
Learn More

Reducing Wildfire Risks with Science

Hotter and drier conditions are making wildfires more intense and destructive across the United States. Science from the USGS Ecosystems Land Change Science Program informs local to national reduction of wildfire hazards, which saves money in avoided losses and fire suppression costs, as well as saves human lives.
Reducing Wildfire Risks with Science

Reducing Wildfire Risks with Science

Hotter and drier conditions are making wildfires more intense and destructive across the United States. Science from the USGS Ecosystems Land Change Science Program informs local to national reduction of wildfire hazards, which saves money in avoided losses and fire suppression costs, as well as saves human lives.
Learn More

Impacts of changing climate and disturbance regimes on forest ecosystem resilience in the Southern Rocky Mountains

Climate-driven forest disturbances, particularly drought-induced tree mortality and large high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies) in the Southern Rockies and across the Western U.S. We will combine unique, long-term place-based ecological data, diverse methods (e.g., paleo...
Impacts of changing climate and disturbance regimes on forest ecosystem resilience in the Southern Rocky Mountains

Impacts of changing climate and disturbance regimes on forest ecosystem resilience in the Southern Rocky Mountains

Climate-driven forest disturbances, particularly drought-induced tree mortality and large high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies) in the Southern Rockies and across the Western U.S. We will combine unique, long-term place-based ecological data, diverse methods (e.g., paleo...
Learn More

Paleo Research: Integrating Systems and Models (PRISM5)

PRISM5 addresses how the world, and particularly the US east coast, is affected by change. We study past warm periods from the Pliocene, Middle Miocene and early Eocene because these periods provide a suite of natural experiments in which marine ecosystems responded to rapidly changing temperature, sea-level and atmospheric CO2 for comparison to modern and future projections. We study how both...
Paleo Research: Integrating Systems and Models (PRISM5)

Paleo Research: Integrating Systems and Models (PRISM5)

PRISM5 addresses how the world, and particularly the US east coast, is affected by change. We study past warm periods from the Pliocene, Middle Miocene and early Eocene because these periods provide a suite of natural experiments in which marine ecosystems responded to rapidly changing temperature, sea-level and atmospheric CO2 for comparison to modern and future projections. We study how both...
Learn More

Holocene and Modern Drivers of Wetland Change

On a global scale, wetland systems are affected by precipitation extremes, changing sea level, and population growth, influencing their capacity to moderate storm surge, filter contaminants, and provide habitats for fish and wildlife. This research takes a long-term perspective on the resilience of wetlands to a range of environmental- and human-induced changes and supports wetland management by...
Holocene and Modern Drivers of Wetland Change

Holocene and Modern Drivers of Wetland Change

On a global scale, wetland systems are affected by precipitation extremes, changing sea level, and population growth, influencing their capacity to moderate storm surge, filter contaminants, and provide habitats for fish and wildlife. This research takes a long-term perspective on the resilience of wetlands to a range of environmental- and human-induced changes and supports wetland management by...
Learn More

Did we start the fire? Drought, Fire and Humans

The past decade encompasses some of the most extensive fire activity in recorded history. An area the size of Vermont (~24,000 km2) burned in a single Siberian fire in the summer of 2019 (Kehrwald et al., 2020 and references therein) while Australia, Indonesia and the Amazon have all experienced their most intense fires in recorded history (van Wees et al, 2021 and references therein). As more...
Did we start the fire? Drought, Fire and Humans

Did we start the fire? Drought, Fire and Humans

The past decade encompasses some of the most extensive fire activity in recorded history. An area the size of Vermont (~24,000 km2) burned in a single Siberian fire in the summer of 2019 (Kehrwald et al., 2020 and references therein) while Australia, Indonesia and the Amazon have all experienced their most intense fires in recorded history (van Wees et al, 2021 and references therein). As more...
Learn More

Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)

Warming and thawing of permafrost soils in the Arctic is expected to become widespread over the coming decades. Permafrost thaw changes ecosystem structure and function, affects resource availability for wildlife and society, and decreases ground stability which affects human infrastructure. Since permafrost soils contain about half of the global soil carbon (C) pool, the magnitude of C losses...
Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)

Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)

Warming and thawing of permafrost soils in the Arctic is expected to become widespread over the coming decades. Permafrost thaw changes ecosystem structure and function, affects resource availability for wildlife and society, and decreases ground stability which affects human infrastructure. Since permafrost soils contain about half of the global soil carbon (C) pool, the magnitude of C losses...
Learn More

Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Drought and fire are powerful disturbance agents that can trigger rapid and lasting changes in the forests of western North America. Over the last decade, increases in fire size and severity coincided with warming, drought, and earlier snowmelt, factors that projected climatic changes are likely to exacerbate. However, recent observations are brief relative to the lifespans of trees and include...
Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Drought and fire are powerful disturbance agents that can trigger rapid and lasting changes in the forests of western North America. Over the last decade, increases in fire size and severity coincided with warming, drought, and earlier snowmelt, factors that projected climatic changes are likely to exacerbate. However, recent observations are brief relative to the lifespans of trees and include...
Learn More

Quaternary Hydroclimate Records of Spring Ecosystems

Desert springs and wetlands are among the most biologically productive, diverse, and fragile ecosystems on Earth. They are home to thousands of rare, endemic, and endangered plants and animals and reflect the availability and health of emergent groundwater. Despite the ecological importance of these wetlands, our knowledge of how they might respond to future environmental conditions is limited...
Quaternary Hydroclimate Records of Spring Ecosystems

Quaternary Hydroclimate Records of Spring Ecosystems

Desert springs and wetlands are among the most biologically productive, diverse, and fragile ecosystems on Earth. They are home to thousands of rare, endemic, and endangered plants and animals and reflect the availability and health of emergent groundwater. Despite the ecological importance of these wetlands, our knowledge of how they might respond to future environmental conditions is limited...
Learn More

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...
Past Perspectives of Water in the West

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...
Learn More

Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...
Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...
Learn More
Was this page helpful?