Skip to main content
U.S. flag

An official website of the United States government

Cryosphere: Earth’s Snow, Ice, and Permafrost

The Arctic and frozen lands are experiencing rapid changes and play large roles in infrastructure, natural resources, and regulation of global climate. The Ecosystems Land Change Science Program conducts research to improve our understanding of avalanches, permafrost, glaciers, and sea ice, and their response to changing climates in the past, present, and future.

Filter Total Items: 17

Glaciers and Landscape Change

Mountain glaciers are dynamic reservoirs of frozen water, deeply interconnected with their surrounding ecosystems. Glacier change in North America has major societal impacts, including to water resources, natural hazard risk, tourism disruption, fisheries, and global sea level change. Understanding and quantifying precise connections between changing glaciers, the surrounding landscape and climate...
Glaciers and Landscape Change

Glaciers and Landscape Change

Mountain glaciers are dynamic reservoirs of frozen water, deeply interconnected with their surrounding ecosystems. Glacier change in North America has major societal impacts, including to water resources, natural hazard risk, tourism disruption, fisheries, and global sea level change. Understanding and quantifying precise connections between changing glaciers, the surrounding landscape and climate...
Learn More

How Science Helps Manage Changing Water Availability and Quality: Droughts, Floods, Avalanches and More

Droughts, floods, and avalanches are extreme events in the water cycle that can have catastrophic and lasting impacts on ecosystems and society. In addition to these extreme events, human changes to the landscape (including land use changes) can have substantial impacts on freshwater resources as well. Science from the USGS Ecosystems Land Change Science Program helps managers and decision-makers...
How Science Helps Manage Changing Water Availability and Quality: Droughts, Floods, Avalanches and More

How Science Helps Manage Changing Water Availability and Quality: Droughts, Floods, Avalanches and More

Droughts, floods, and avalanches are extreme events in the water cycle that can have catastrophic and lasting impacts on ecosystems and society. In addition to these extreme events, human changes to the landscape (including land use changes) can have substantial impacts on freshwater resources as well. Science from the USGS Ecosystems Land Change Science Program helps managers and decision-makers...
Learn More

Research Enhancing Park Recreation and Tourism

Scientists from the USGS Ecosystems Land Change Science Program work hand-in-hand with park managers to support abundant and enduring outdoor recreation and tourism opportunities in the Nation’s national parks.
Research Enhancing Park Recreation and Tourism

Research Enhancing Park Recreation and Tourism

Scientists from the USGS Ecosystems Land Change Science Program work hand-in-hand with park managers to support abundant and enduring outdoor recreation and tourism opportunities in the Nation’s national parks.
Learn More

Going-to-the-Sun Road Avalanche Forecasting Program

As the most popular attraction in Glacier National Park, Going-to-the-Sun Road (GTSR) traverses scenic alpine zones and crosses the Continental Divide. The Park closes a section of GTSR each winter due to inclement weather, heavy snowfall, and avalanche hazards. Annual spring opening of GTSR is a highly anticipated event for visitors, and the regional economy is strongly tied to the road’s...
Going-to-the-Sun Road Avalanche Forecasting Program

Going-to-the-Sun Road Avalanche Forecasting Program

As the most popular attraction in Glacier National Park, Going-to-the-Sun Road (GTSR) traverses scenic alpine zones and crosses the Continental Divide. The Park closes a section of GTSR each winter due to inclement weather, heavy snowfall, and avalanche hazards. Annual spring opening of GTSR is a highly anticipated event for visitors, and the regional economy is strongly tied to the road’s...
Learn More

Did we start the fire? Drought, Fire and Humans

The past decade encompasses some of the most extensive fire activity in recorded history. An area the size of Vermont (~24,000 km2) burned in a single Siberian fire in the summer of 2019 (Kehrwald et al., 2020 and references therein) while Australia, Indonesia and the Amazon have all experienced their most intense fires in recorded history (van Wees et al, 2021 and references therein). As more...
Did we start the fire? Drought, Fire and Humans

Did we start the fire? Drought, Fire and Humans

The past decade encompasses some of the most extensive fire activity in recorded history. An area the size of Vermont (~24,000 km2) burned in a single Siberian fire in the summer of 2019 (Kehrwald et al., 2020 and references therein) while Australia, Indonesia and the Amazon have all experienced their most intense fires in recorded history (van Wees et al, 2021 and references therein). As more...
Learn More

Wet Snow Avalanche Research

Wet snow avalanches, including both wet slab and glide avalanches, are dangerous and can be particularly difficult to predict because they are relatively poorly understood compared to dry snow avalanches. They pose significant risk to human life and infrastructure in mountainous areas throughout the world. Wet snow avalanches are caused by weakening in the strength of the snowpack, often triggered...
Wet Snow Avalanche Research

Wet Snow Avalanche Research

Wet snow avalanches, including both wet slab and glide avalanches, are dangerous and can be particularly difficult to predict because they are relatively poorly understood compared to dry snow avalanches. They pose significant risk to human life and infrastructure in mountainous areas throughout the world. Wet snow avalanches are caused by weakening in the strength of the snowpack, often triggered...
Learn More

Remote Sensing Tools Advance Avalanche Research

The USGS Snow and Avalanche Project (SNAP) uses remotely sensed technologies to understand snowpack changes that influence water storage, recreation, avalanche hazard and acts as a driver of landscape change. Satellites, uninhabited aerial systems (UAS), and structure-from-motion (SfM) photogrammetry are some of the tools scientists use to collect high resolution imagery that supports ongoing snow...
Remote Sensing Tools Advance Avalanche Research

Remote Sensing Tools Advance Avalanche Research

The USGS Snow and Avalanche Project (SNAP) uses remotely sensed technologies to understand snowpack changes that influence water storage, recreation, avalanche hazard and acts as a driver of landscape change. Satellites, uninhabited aerial systems (UAS), and structure-from-motion (SfM) photogrammetry are some of the tools scientists use to collect high resolution imagery that supports ongoing snow...
Learn More

Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)

Warming and thawing of permafrost soils in the Arctic is expected to become widespread over the coming decades. Permafrost thaw changes ecosystem structure and function, affects resource availability for wildlife and society, and decreases ground stability which affects human infrastructure. Since permafrost soils contain about half of the global soil carbon (C) pool, the magnitude of C losses...
Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)

Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)

Warming and thawing of permafrost soils in the Arctic is expected to become widespread over the coming decades. Permafrost thaw changes ecosystem structure and function, affects resource availability for wildlife and society, and decreases ground stability which affects human infrastructure. Since permafrost soils contain about half of the global soil carbon (C) pool, the magnitude of C losses...
Learn More

USGS Snow and Avalanche Project

Snow avalanches are a widespread natural hazard to humans and infrastructure as well as an important landscape disturbance affecting mountain ecosystems. Forecasting avalanche frequency is challenging on various spatial and temporal scales, and this project aims to fill a gap in snow science by focusing on reconstructing avalanche history on the continental mountain range scale - throughout the...
USGS Snow and Avalanche Project

USGS Snow and Avalanche Project

Snow avalanches are a widespread natural hazard to humans and infrastructure as well as an important landscape disturbance affecting mountain ecosystems. Forecasting avalanche frequency is challenging on various spatial and temporal scales, and this project aims to fill a gap in snow science by focusing on reconstructing avalanche history on the continental mountain range scale - throughout the...
Learn More

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...
Past Perspectives of Water in the West

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...
Learn More

Wetlands in the Quaternary

Wetlands accumulate organic-rich sediment or peat stratigraphically, making them great archives of past environmental change. Wetlands also act as hydrologic buffers on the landscape and are important to global biogeochemical cycling. This project uses wetland archives from a range of environments to better understand how vegetation, hydrology, and hydroclimate has changed on decadal to multi...
Wetlands in the Quaternary

Wetlands in the Quaternary

Wetlands accumulate organic-rich sediment or peat stratigraphically, making them great archives of past environmental change. Wetlands also act as hydrologic buffers on the landscape and are important to global biogeochemical cycling. This project uses wetland archives from a range of environments to better understand how vegetation, hydrology, and hydroclimate has changed on decadal to multi...
Learn More

Linking water, carbon, and nitrogen cycles in seasonally snow-covered catchments under changing land resource conditions

Changes in snowpack accumulation, distribution, and melt in high-elevation catchments are likely to have important impacts on water, carbon, and nitrogen cycles, which are tightly coupled through exchanges of energy and biogeochemical compounds between atmospheric, terrestrial, and aquatic environments. Our research helps to better understand how changes in climate will affect water availability...
Linking water, carbon, and nitrogen cycles in seasonally snow-covered catchments under changing land resource conditions

Linking water, carbon, and nitrogen cycles in seasonally snow-covered catchments under changing land resource conditions

Changes in snowpack accumulation, distribution, and melt in high-elevation catchments are likely to have important impacts on water, carbon, and nitrogen cycles, which are tightly coupled through exchanges of energy and biogeochemical compounds between atmospheric, terrestrial, and aquatic environments. Our research helps to better understand how changes in climate will affect water availability...
Learn More
Was this page helpful?