Our surface water, groundwater, and aquatic ecosystems are priceless resources, used by people across the Nation for drinking, irrigation, industry, and recreation. The National Water-Quality Assessment (NAWQA) Project is a leading source of scientific data and knowledge for development of science-based policies and management strategies to improve and protect our water resources.
Quick Links
Looking for data? Maps? Use these links to quickly access some of the most frequently visited USGS web pages on water quality.
In 1991, Congress established the National Water-Quality Assessment (NAWQA) Project to address where, when, why, and how the Nation's water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has produced scientific data and knowledge that is used by national, regional, state, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs. A prominent feature of NAWQA is the development of long-term consistent and comparable information on streams, rivers, ground water, and aquatic systems. The NAWQA Project is designed to answer these questions:
- What is the current condition of our Nation's streams, rivers, and groundwater?
- How are these conditions changing over time?
- How do natural features and human activities affect these conditions, and where are those effects most pronounced?
NAWQA Water-Quality Research
SURFACE WATER AND ECOLOGY
Water Quality and Ecology of Small Streams (RSQA)
The Regional Stream Quality Assessment (RSQA) is studying the relations between stressors (chemical and physical) and stream ecology (fish, algae, and aquatic invertebrates) at small streams in five large regions of the United States. Users can access an online mapping tool to compare water quality at small streams across a region, see scorecards that summarize stream health at each stream site, and download data for hundreds of chemical compounds.
Water Quality in the Nation's Streams and Rivers: Current Conditions and Long-Term Trends
Knowing the current water-quality conditions of our rivers and streams and where those conditions have improved or deteriorated is critical information for resource managers and the public. An online water-quality tracking tool shows graphs of pesticides, nutrients, and sediment in streams, and users can download data for a streams and rivers across the country; the tool is updated annually. The online water-quality trends mapping tool allows users to visualize trends in water chemistry (nutrients, pesticides, sediment, carbon, and salinity) and aquatic ecology (fish, invertebrates, and algae).
SPARROW modeling: Estimating nutrient, sediment, and dissolved solids transport
SPARROW (SPAtially Referenced Regression On Watershed attributes) models estimate the amount of a contaminant transported from inland watersheds to larger water bodies by linking monitoring data with information on watershed characteristics and contaminant sources. Users can explore relations between human activities, natural processes, and contaminant transport using interactive mappers.
GROUNDWATER
Groundwater Quality: Current Conditions and Changes Through Time
Scientists are characterizing groundwater quality in principal aquifers, the primary source of the Nation's groundwater used for drinking. Concentrations of inorganic constituents, such as arsenic and nitrate, and organic constituents, such as pesticides and volatile organic compounds, are compared to benchmarks established for the protection of human health. Users can access an online tool to see how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation, and see in real time how chemical properties of groundwater at some sites are fluctuating.
Groundwater Quality: Predictions for Unmonitored Areas
Groundwater hydrologists are developing statistical models that predict where a contaminant is likely to occur in groundwater and at what concentration. These models extrapolate groundwater quality in areas and at depths where groundwater has not yet been sampled. Users can see predicted contaminant concentrations in map view, and—for some aquifers—in 3-D.
SURFACE WATER/GROUNDWATER INTERACTION
Groundwater/Surface-Water Interaction
Surface water and groundwater are intimately connected and are constantly interacting. The Integrated Watershed Studies team is quantifying how water and chemicals move between the landscape, streams and rivers, and groundwater. Learn how the quantity and quality of surface water and groundwater are likely to change in response to changes in climate, land use, and best management practices.
NAWQA — The First Two Decades
From 1991-2001, the NAWQA Project conducted interdisciplinary assessments, including water chemistry, hydrology, land use, stream habitat, and aquatic life, and established a baseline understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study Units.
From 2001-2012, NAWQA focused on specific water-quality topics of national interest, such as pesticides, nutrients, and aquatic ecology, as well as continuing to monitor and assess 42 of the Study Units.
► Learn about the first two decades of NAWQA research and access information and publications about the quality of the Nation's surface-water and groundwater resources.
How do we do it?
Find methods used by NAWQA to assesses the current quality of our surface water and groundwater.
► Documentation on water-quality sample collection methods developed by NAWQA.
Explore Related Topics on Water-Quality Research
RELATIONS BETWEEN LAND USE AND WATER QUALITY
Urban Land Use and Water Quality
Agricultural Contamination
CONTAMINANTS IN WATER
Arsenic and Drinking Water
Chloride, salinity, and dissolved solids
Emerging contaminants (including pharmaceuticals and hormones)
Mercury
Metals and Other Trace Elements
Nutrients and Eutrophication
National Atmospheric Deposition Program (NADP)
Pesticides and Water Quality
Coal-Tar-Based Pavement Sealcoat, PAHs, and Environmental Health
Radionuclides
Sediment-associated contaminants
Volatile organic compounds (VOCs) (including MTBE)
DRINKING WATER ISSUES
Corrosivity
Domestic (private) supply wells
Public-supply wells
Drinking-water taste and odor
Water-Quality Benchmarks for Contaminants
Drinking Water and Source Water Research
RELATIONS TO AQUATIC LIFE
Stream ecology
Mercury
Streamflow Alteration
NWQP Research on Harmful Algal Blooms (HABs)
TRENDS IN WATER QUALITY
Water-quality trends
Water-quality trends from lake sediment cores
PROCESSES
Oxidation/Reduction (Redox)
Groundwater Age
► Confused by some of the water-quality terms? Find the definitions and explanations you're looking for in the Water-Quality Glossary.
Learn more about some of the research associated with the National Water Quality Assessment project.
Surface-Water Quality and Ecology
Volatile Organic Compounds (VOCs)
Oxidation/Reduction (Redox)
Water-Quality Quick Links
National Water-Quality Project Sampling Methods
Water-Quality Trends
Drinking Water Taste and Odor
Sediment-Associated Contaminants
Stream Ecology
Web applications and downloadable data related to NAWQA water-quality research.
Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes
National USEPA Clean Watershed Needs Survey WWTP nutrient loads 1978 to 2012
Datasets from Groundwater-Quality Data from the National Water-Quality Assessment Project, January through December 2014 and Select Quality-Control Data from May 2012 through December 2014
U.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences
Watershed characteristics for study sites of the U.S. Geological Surveys National Water Quality Programs Surface Water Trends project
Location and population served by domestic wells in the conterminous U.S.: 1990
Methane and benzene in drinking-water wells overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas
Depth to 50 percent probability of oxic conditions, Chesapeake Bay Watershed
Data Sets and Figures for the Report Entitled, "A Field Study of Selected U.S. Geological Survey Analytical Methods for Measuring Pesticides in Filtered Stream Water, June-September 2012"
County-Level Estimates of Nitrogen and Phosphorus from Commercial Fertilizer for the Conterminous United States, 1987-2012
Coefficient-based consistent mapping of imperviousness in the conterminous U.S. at 60-m resolution for 1974, 1982, 1992, 2002, and 2012
Conterminous U.S. mapping of household income at the block group scale adjusted for cost-of-living for the period 2013-2014
County-level estimates of nitrogen and phosphorus from animal manure (2007 and 2012) and 30-meter-resolution grid of counties (2010) for the conterminous United States
The NAWQA project publishes reports that describe water-quality and ecological conditions; whether conditions are changing over time; and how natural features and human activities affect these conditions.
The most recent publications and selected national-scale reports are listed here.
Flow modification in the Nation’s streams and rivers
Groundwater quality in the Columbia Plateau basaltic-rock aquifers, northwestern United States
Groundwater quality in the High Plains aquifer
Landscape drivers of dynamic change in water quality of US rivers
Pavement alters delivery of sediment and fallout radionuclides to urbanstreams
Changing suspended sediment in United States rivers and streams: Linking sediment trends to changes in land use/cover, hydrology and climate
Causal factors for pesticide trends in streams of the United States: Atrazine and deethylatrazine
Multi-region assessment of pharmaceutical exposures and predicted effects in USA wadeable urban-gradient streams
Cyanotoxin occurrence in large rivers of the United States
Cyanotoxins occur in rivers worldwide but are understudied in lotic ecosystems relative to lakes and reservoirs. Eleven large river sites located throughout the United States were sampled during June–September 2017 to determine the occurrence of cyanobacteria with known cyanotoxin-producing strains, cyanotoxin synthetase genes, and cyanotoxins. Chlorophyll-a concentrations spanned the range from o
Daily stream samples reveal highly complex pesticide occurrence and potential toxicity to aquatic life
Time scales of arsenic variability and the role of high-frequency monitoring at three water-supply wells in New Hampshire, USA
Network controls on mean and variance of nitrate loads from the Mississippi River to the Gulf of Mexico
Using age tracers and decadal sampling to discern trends in nitrate, arsenic and uranium in groundwater beneath irrigated cropland
Interactive mappers and web applications related to NAWQA water-quality research.
Isotopic tracers in fish in Northeast provide clue to mercury sources
Isotopes of mercury in fish can indicate the source of that mercury, reports a new study from the USGS Regional Stream Quality Assessment.
- Overview
Our surface water, groundwater, and aquatic ecosystems are priceless resources, used by people across the Nation for drinking, irrigation, industry, and recreation. The National Water-Quality Assessment (NAWQA) Project is a leading source of scientific data and knowledge for development of science-based policies and management strategies to improve and protect our water resources.
Quick LinksLooking for data? Maps? Use these links to quickly access some of the most frequently visited USGS web pages on water quality.
In 1991, Congress established the National Water-Quality Assessment (NAWQA) Project to address where, when, why, and how the Nation's water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has produced scientific data and knowledge that is used by national, regional, state, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs. A prominent feature of NAWQA is the development of long-term consistent and comparable information on streams, rivers, ground water, and aquatic systems. The NAWQA Project is designed to answer these questions:
- What is the current condition of our Nation's streams, rivers, and groundwater?
- How are these conditions changing over time?
- How do natural features and human activities affect these conditions, and where are those effects most pronounced?
NAWQA Water-Quality Research
SURFACE WATER AND ECOLOGY
Water Quality and Ecology of Small Streams (RSQA)
The Regional Stream Quality Assessment (RSQA) is studying the relations between stressors (chemical and physical) and stream ecology (fish, algae, and aquatic invertebrates) at small streams in five large regions of the United States. Users can access an online mapping tool to compare water quality at small streams across a region, see scorecards that summarize stream health at each stream site, and download data for hundreds of chemical compounds.Water Quality in the Nation's Streams and Rivers: Current Conditions and Long-Term Trends
Knowing the current water-quality conditions of our rivers and streams and where those conditions have improved or deteriorated is critical information for resource managers and the public. An online water-quality tracking tool shows graphs of pesticides, nutrients, and sediment in streams, and users can download data for a streams and rivers across the country; the tool is updated annually. The online water-quality trends mapping tool allows users to visualize trends in water chemistry (nutrients, pesticides, sediment, carbon, and salinity) and aquatic ecology (fish, invertebrates, and algae).SPARROW modeling: Estimating nutrient, sediment, and dissolved solids transport
SPARROW (SPAtially Referenced Regression On Watershed attributes) models estimate the amount of a contaminant transported from inland watersheds to larger water bodies by linking monitoring data with information on watershed characteristics and contaminant sources. Users can explore relations between human activities, natural processes, and contaminant transport using interactive mappers.From left: Aquatic sampling during Southeast Stream Quality Assessment; velocity measurement at Truckee River, Nevada; wrestling with cages of fathead minnows in Goodwater Creek, Missouri, during high flow. GROUNDWATER
Groundwater Quality: Current Conditions and Changes Through Time
Scientists are characterizing groundwater quality in principal aquifers, the primary source of the Nation's groundwater used for drinking. Concentrations of inorganic constituents, such as arsenic and nitrate, and organic constituents, such as pesticides and volatile organic compounds, are compared to benchmarks established for the protection of human health. Users can access an online tool to see how concentrations of pesticides, nutrients, metals, and organic contaminants in groundwater are changing during decadal periods across the Nation, and see in real time how chemical properties of groundwater at some sites are fluctuating.Groundwater Quality: Predictions for Unmonitored Areas
Groundwater hydrologists are developing statistical models that predict where a contaminant is likely to occur in groundwater and at what concentration. These models extrapolate groundwater quality in areas and at depths where groundwater has not yet been sampled. Users can see predicted contaminant concentrations in map view, and—for some aquifers—in 3-D.From left: measuring groundwater salinity in Georgia; collecting groundwater samples for laboratory analysis in Florida; sampling shallow groundwater wells for an agricultural land-use study in Georgia; collecting groundwater samples in Nevada. SURFACE WATER/GROUNDWATER INTERACTION
Groundwater/Surface-Water Interaction
Surface water and groundwater are intimately connected and are constantly interacting. The Integrated Watershed Studies team is quantifying how water and chemicals move between the landscape, streams and rivers, and groundwater. Learn how the quantity and quality of surface water and groundwater are likely to change in response to changes in climate, land use, and best management practices.From left: Installing shallow groundwater wells at ephemeral ponds; the Alapaha River , a "losing" stream at low flow; marking groundwater seeps. (Credit: Alan Cressler, USGS) NAWQA — The First Two Decades
From 1991-2001, the NAWQA Project conducted interdisciplinary assessments, including water chemistry, hydrology, land use, stream habitat, and aquatic life, and established a baseline understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study Units.
From 2001-2012, NAWQA focused on specific water-quality topics of national interest, such as pesticides, nutrients, and aquatic ecology, as well as continuing to monitor and assess 42 of the Study Units.
► Learn about the first two decades of NAWQA research and access information and publications about the quality of the Nation's surface-water and groundwater resources.
How do we do it?
Find methods used by NAWQA to assesses the current quality of our surface water and groundwater.
► Documentation on water-quality sample collection methods developed by NAWQA.
Explore Related Topics on Water-Quality Research
RELATIONS BETWEEN LAND USE AND WATER QUALITY
Urban Land Use and Water Quality
Agricultural ContaminationCONTAMINANTS IN WATER
Arsenic and Drinking Water
Chloride, salinity, and dissolved solids
Emerging contaminants (including pharmaceuticals and hormones)
Mercury
Metals and Other Trace Elements
Nutrients and Eutrophication
National Atmospheric Deposition Program (NADP)
Pesticides and Water Quality
Coal-Tar-Based Pavement Sealcoat, PAHs, and Environmental Health
Radionuclides
Sediment-associated contaminants
Volatile organic compounds (VOCs) (including MTBE)DRINKING WATER ISSUES
Corrosivity
Domestic (private) supply wells
Public-supply wells
Drinking-water taste and odor
Water-Quality Benchmarks for Contaminants
Drinking Water and Source Water ResearchRELATIONS TO AQUATIC LIFE
Stream ecology
Mercury
Streamflow Alteration
NWQP Research on Harmful Algal Blooms (HABs)TRENDS IN WATER QUALITY
Water-quality trends
Water-quality trends from lake sediment coresPROCESSES
Oxidation/Reduction (Redox)
Groundwater Age► Confused by some of the water-quality terms? Find the definitions and explanations you're looking for in the Water-Quality Glossary.
- Science
Learn more about some of the research associated with the National Water Quality Assessment project.
Filter Total Items: 33Surface-Water Quality and Ecology
Research by the USGS National Water Quality Assessment (NAWQA) Project on water quality of rivers and streams covers a broad range of topics, from nonpoint pollution issues to vulnerability of aquatic ecosystems. Dive in and find out more about current water-quality conditions, how and where water quality is changing, and the latest information on pesticides, nutrients, and other contaminants.Volatile Organic Compounds (VOCs)
Volatile organic compounds (VOCs) are chemicals that both vaporize into air and dissolve in water. VOCs are pervasive in daily life, because they’re used in industry, agriculture, transportation, and day-to-day activities around the home. Once released into groundwater, many VOCs are persistent and can migrate to drinking-water supply wells.Oxidation/Reduction (Redox)
The redox state of groundwater—whether the groundwater is oxic (oxidized) or anoxic (reduced)—has profound implications for groundwater quality. Knowing the redox conditions of groundwater can help determine whether it contains elevated levels of many contaminants, including arsenic, nitrate, and even some manmade contaminants.Water-Quality Quick Links
Looking for data? Maps? Use the links below to quickly access some of the most frequently visited USGS web pages on water quality.National Water-Quality Project Sampling Methods
USGS National Water Quality Assessment (NAWQA) studies require analyses of stream and bed-sediment samples for major ions, nutrients, sediments, and organic contaminants that are consistent across time and space. Procedures have been designed specifically to produce information that is comparable among studies in different parts of the Nation.Water-Quality Trends
Is water quality getting better or worse? Answering this deceptively simple question has been a fundamental objective of the USGS National Water-Quality Assessment Project’s research. Learn about trends in contaminants in the nation’s streams and rivers, trends in contaminants that collect in the bed sediment of streams and lakes, and changes in the quality of the nation’s groundwater.Drinking Water Taste and Odor
Some water is just unpleasant to drink—it’s cloudy, or it smells or tastes bad. Some drinking water discolors teeth or skin, stains laundry or plumbing fixtures, or corrodes or clogs pipes. These effects are caused when some naturally occurring constituents occur at concentrations high enough to be a nuisance, and are particularly common where groundwater is used as a drinking water supply.Sediment-Associated Contaminants
Stream, river, and lake bed sediment are reservoirs for many contaminants. These contaminants include some “legacy” contaminants, like DDT, PCBs, and chlordane, and chemicals currently in use, like the insecticide bifenthrin and many flame retardants. Learn about techniques used to study sediment-associated contaminants and their importance to aquatic biota.Stream Ecology
Who lives in your stream? Rivers and streams, even small ones, are teeming with a vast number of species, including fish, aquatic invertebrates, and algae. Stream ecology is the study of those aquatic species, the way they interrelate, and their interactions with all aspects of these flowing water systems. - Data
Web applications and downloadable data related to NAWQA water-quality research.
Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes
This product consists of time-series calculations of anthropogenic characteristics derived for 16 data themes for multiple scales covering the conterminous United States. The characteristics are those which (a) have consistent data sources, and (b) have the potential to affect the water quality of streams and rivers. All 16 data themes are provided for Hydrologic Unit Code level-10 (HUC-10) boundaFilter Total Items: 50National USEPA Clean Watershed Needs Survey WWTP nutrient loads 1978 to 2012
This dataset contains tabular data for U.S. Environmental Protection Agencys (EPA) Clean Watersheds Needs Survey (CWNS) wastewater treatment facility information. Literature-based average total nitrogen and total phosphorous concentrations were substituted for wastewater treatment levels reported for each facility because little or no concentration data is reported in the CWNS. Concentrations wereDatasets from Groundwater-Quality Data from the National Water-Quality Assessment Project, January through December 2014 and Select Quality-Control Data from May 2012 through December 2014
Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, whicU.S. Geological Survey GAGES-II time series data from consistent sources of land use, water use, agriculture, timber activities, dam removals, and other historical anthropogenic influences
This product is a series of ten datasets containing tabular data from historical time series sources for the 9,067 conterminous United States sites in the U.S. Geological Survey (USGS) Geospatial Attributes of Gages for Evaluating Streamflow II (GAGES-II) dataset. The tables contain time-series data derived from consistent sources of agricultural commodities such as crop types, irrigation, and livWatershed characteristics for study sites of the U.S. Geological Surveys National Water Quality Programs Surface Water Trends project
This product consists of 29 datasets of tabular data and associated metadata for watershed characteristics of 1,530 study sites of the Surface Water Trends (SWT) project of the U.S. Geological Surveys (USGS) National Water Quality Program (NWQP). The project is conducting national studies of trends in water quality of streams and rivers for periods ranging from 10 to 40 years, between 1972 and 201Location and population served by domestic wells in the conterminous U.S.: 1990
In this dataset we present two maps that estimate the location and population served by domestic wells in the contiguous United States. The first methodology, called the Block Group Method or BGM, builds upon the original block-group data from the 1990 census (the last time the U.S. Census queried the population regarding their source of water) by incorporating higher resolution census block data.Methane and benzene in drinking-water wells overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas
Groundwater samples were collected from domestic and public-supply wells in the Eagle Ford study area in 201516, in the Fayetteville study area in 2015, and in the Haynesville study area in 201415. One sample of produced water was collected from a gas well in the Haynesville Shale in Rusk County, Texas in 2010, and 5 samples of produced water were collected from oil and condensate wells in the EaDepth to 50 percent probability of oxic conditions, Chesapeake Bay Watershed
Defining the oxic-suboxic interface is often critical for determining pathways for nitrate transport in groundwater and to streams at the local scale. Defining this interface on a regional scale is complicated by the spatial variability of reaction rates. The probability of oxic groundwater in the Chesapeake Bay watershed was predicted by relating dissolved O2 concentrations in groundwater samplesData Sets and Figures for the Report Entitled, "A Field Study of Selected U.S. Geological Survey Analytical Methods for Measuring Pesticides in Filtered Stream Water, June-September 2012"
The National Water-Quality Assessment (NAWQA) Program and National Stream Quality Accounting Network (NASQAN) are U.S. Geological Survey (USGS) monitoring programs that measure pesticide concentrations in the Nations streams and rivers, herein collectively referred to as streams. The NAWQA Program began monitoring pesticides in 1992 and the NASQAN Program began monitoring pesticides in 1995. The pCounty-Level Estimates of Nitrogen and Phosphorus from Commercial Fertilizer for the Conterminous United States, 1987-2012
This data set contains county-level estimates of nitrogen and phosphorus from fertilizer, for both farm and nonfarm uses, for the conterminous United States, for 1987 through 2012. State-level farm and nonfarm nitrogen and phosphorus were derived from the Association of American Plant Food Control Officials (AAPFCO) commercial fertilizer sales data. State estimates were then allocated to the countCoefficient-based consistent mapping of imperviousness in the conterminous U.S. at 60-m resolution for 1974, 1982, 1992, 2002, and 2012
Anthropogenic impervious surfaces affect hydrology, water quality, and ecological health and are widely studied. Previous studies have been limited, however, by a lack of consistent representation of imperviousness nationally as a time series prior to 2001. This product presents estimated imperviousness at 60-meter spatial resolution, for the time periods 1974, 1982, 1992, 2002, and 2012. The mappConterminous U.S. mapping of household income at the block group scale adjusted for cost-of-living for the period 2013-2014
Household income is a potential predictor for a number of environmental influences, for example, application of urban pesticides. This product is a U.S. conterminous mapping of block group income derived from the 2010-2014 Census American Community Survey (ACS), adjusted by a 2013 county-level Cost-of-Living index obtained from the Council for Community and Economic Research. The resultant rasterCounty-level estimates of nitrogen and phosphorus from animal manure (2007 and 2012) and 30-meter-resolution grid of counties (2010) for the conterminous United States
There are two datasets in the compressed file along with individual metadata files which completely describe the datasets. The first data set consists of county estimates of nitrogen and phosphorus in kilograms from animal manure for the conterminous United States for 2007 and 2012. These data are available as both text files and spreadsheets. These estimates were based on county-level population - Multimedia
- Publications
The NAWQA project publishes reports that describe water-quality and ecological conditions; whether conditions are changing over time; and how natural features and human activities affect these conditions.
The most recent publications and selected national-scale reports are listed here.
Flow modification in the Nation’s streams and rivers
This report summarizes a national assessment of flowing waters conducted by the U.S. Geological Survey’s (USGS) National Water-Quality Assessment (NAWQA) Project and addresses several pressing questions about the modification of natural flows in streams and rivers. The assessment is based on the integration, modeling, and synthesis of monitoring data collected by the USGS and the U.S. EnvironmentaAuthorsDaren Carlisle, David M. Wolock, Christopher P. Konrad, Gregory J. McCabe, Ken Eng, Theodore E. Grantham, Barbara MahlerFilter Total Items: 107Groundwater quality in the Columbia Plateau basaltic-rock aquifers, northwestern United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Columbia Plateau basaltic-rock aquifers constitute one of the important resources being evaluated.AuthorsMaryLynn MusgroveGroundwater quality in the High Plains aquifer
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The High Plains aquifer constitutes one of the important aquifers being evaluated.AuthorsMaryLynn MusgroveLandscape drivers of dynamic change in water quality of US rivers
Water security is a top concern for social well-being and dramatic changes in the availability of freshwater have occurred as a result of human uses and landscape management. Elevated nutrient loading and perturbations to major ion composition have resulted from human activities and have degraded freshwater resources. This study addresses the emerging nature of stream water quality in the 21st ceAuthorsEdward G. Stets, Lori A. Sprague, Gretchen P. Oelsner, Henry M. Johnson, Jennifer C. Murphy, Karen R. Ryberg, Aldo V. Vecchia, Robert E. Zuellig, James A. Falcone, Melissa L. RiskinPavement alters delivery of sediment and fallout radionuclides to urbanstreams
Sediment from urban impervious surfaces has the potential to be an important vector for contaminants, particularly where stormwater culverts and other buried channels draining large impervious areas exit from underground pipes into open channels. To better understand urban sediment sources and their relation to fallout radionuclides, we collected samples of rainfall, urban sediment (pavement sedimAuthorsAllen Gellis, Christopher C. Fuller, Peter C. Van Metre, Barbara Mahler, C. Welty, Andrew Miller, Lucas A Nibert, Zachary Clifton, Jeremy Malen, J.T. KemperChanging suspended sediment in United States rivers and streams: Linking sediment trends to changes in land use/cover, hydrology and climate
Sediment is one of the leading pollutants in rivers and streams across the United States (US) and the world. Between 1992 and 2012, concentrations of annual mean suspended sediment decreased at over half of the 137 stream sites assessed across the contiguous US. Increases occurred at less than 25 % of the sites, and the direction of change was uncertain at the remaining 25 %. Sediment trends wereAuthorsJennifer C. MurphyCausal factors for pesticide trends in streams of the United States: Atrazine and deethylatrazine
Pesticides are important for agriculture in the United States, and atrazine is one of the most widely used and widely detected pesticides in surface water. A better understanding of the mechanisms by which atrazine and its degradation product, deethylatrazine, increase and decrease in surface waters can help inform future decisions for water-quality improvement. This study considers causal factorsAuthorsKaren R. Ryberg, Wesley W. Stone, Nancy T. BakerMulti-region assessment of pharmaceutical exposures and predicted effects in USA wadeable urban-gradient streams
Human-use pharmaceuticals in urban streams link aquatic-ecosystem health to human health. Pharmaceutical mixtures have been widely reported in larger streams due to historical emphasis on wastewater-treatment plant (WWTP) sources, with limited investigation of pharmaceutical exposures and potential effects in smaller headwater streams. In 2014–2017, the United States Geological Survey measured 111AuthorsPaul Bradley, Celeste A. Journey, Daniel T. Button, Daren Carlisle, B. J. Huffman, Sharon L. Qi, Kristin Romanok, Peter C. Van MetreByWater Resources Mission Area, Contaminant Biology, Environmental Health Program, Toxic Substances Hydrology, Kansas Water Science Center, New Jersey Water Science Center, Ohio-Kentucky-Indiana Water Science Center, Oklahoma-Texas Water Science Center, Oregon Water Science Center, Pennsylvania Water Science Center, South Atlantic Water Science Center (SAWSC)Cyanotoxin occurrence in large rivers of the United States
Cyanotoxins occur in rivers worldwide but are understudied in lotic ecosystems relative to lakes and reservoirs. Eleven large river sites located throughout the United States were sampled during June–September 2017 to determine the occurrence of cyanobacteria with known cyanotoxin-producing strains, cyanotoxin synthetase genes, and cyanotoxins. Chlorophyll-a concentrations spanned the range from o
AuthorsJennifer L. Graham, Neil Dubrovsky, Guy Foster, Lindsey R. King, Keith Loftin, Barry Rosen, Erin StelzerDaily stream samples reveal highly complex pesticide occurrence and potential toxicity to aquatic life
Transient, acutely toxic concentrations of pesticides in streams can go undetected by fixed-interval sampling programs. Here we compare temporal patterns in occurrence of current-use pesticides in daily composite samples to those in weekly composite and weekly discrete samples of surface water from 14 small stream sites. Samples were collected over 10–14 weeks at 7 stream sites in each of the MidwAuthorsJulia E. Norman, Barbara Mahler, Lisa H. Nowell, Peter C. Van Metre, Mark W. Sandstrom, Mark A. Corbin, Yaorong Qian, James F. Pankow, Wentai Luo, Nicholas B. Fitzgerald, William E. Asher, Kevin J. McWhirterTime scales of arsenic variability and the role of high-frequency monitoring at three water-supply wells in New Hampshire, USA
Groundwater geochemistry, redox process classification, high-frequency physicochemical and hydrologic measurements, and climate data were analyzed to identify controls on arsenic (As) concentration changes. Groundwater was monitored in two public-supply wells (one glacial aquifer and one bedrock aquifer), and one bedrock-aquifer domestic well in New Hampshire, USA, from 2014 to 2018 to identify tiAuthorsJames R. Degnan, Joseph P. Levitt, Melinda Erickson, Bryant C. Jurgens, Bruce D. Lindsey, Joseph D. AyotteNetwork controls on mean and variance of nitrate loads from the Mississippi River to the Gulf of Mexico
Excessive nitrate loading to the Gulf of Mexico (GoM) has caused widespread hypoxia over many decades. Despite recent reductions in nitrate loads observed at local scales, decreases in nitrate loading from the MRB to the GoM have been small (1.58 % during 2002-2012) with a low level of analytical confidence in this trend. This work seeks to determine the reasons why local-scale improvements have nAuthorsJohn T. Crawford, Edward G. Stets, Lori A. SpragueUsing age tracers and decadal sampling to discern trends in nitrate, arsenic and uranium in groundwater beneath irrigated cropland
Repeat sampling and age tracers were used to examine trends in nitrate, arsenic and uranium concentrations in groundwater beneath irrigated cropland. Much higher nitrate concentrations in shallow modern groundwater were observed at both the Columbia Plateau and High Plains sites (median values of 10.2 and 15.4 mg/L as N, respectively) than in groundwater that recharged prior to the onset of intensAuthorsAnthony J. Tesoriero, Karen R. Burow, Lonna Frans, Jonathan V. Haynes, Christopher M. Hobza, Bruce D. Lindsey, John E. Solder - Web Tools
Interactive mappers and web applications related to NAWQA water-quality research.
- Software
- News
Isotopic tracers in fish in Northeast provide clue to mercury sources
Isotopes of mercury in fish can indicate the source of that mercury, reports a new study from the USGS Regional Stream Quality Assessment.
Filter Total Items: 45