Coastal wetlands and estuaries connect lands and watersheds to the ocean. They are biologically and physically dynamic and are among the most productive and valuable ecosystems in the world. Many different types of USGS scientists work together to increase our understanding of these ecosystems under past, present and future conditions, and how human activities influence them.
What is a coastal wetland?
Coastal wetlands are transitional areas between dry land and open water that are either permanently or seasonally inundated with fresh, brackish, or salt water. They contain a range of plant and animal species that are uniquely adapted to the wet soil conditions, the type of water present, and the degree of inundation.
Types of coastal wetlands include salt marshes, freshwater marshes, seagrass meadows, mangrove swamps, and forested swamps.
What is an estuary?
Estuaries are created where watersheds meet the ocean, bringing land-based waters and salt water from the ocean together. A dynamic ecosystem is created where river flows meet ocean tides. These regions offer food sources and shelter for many different species, including humans.
Estuaries also face a variety of issues that alter their productivity as an ecosystem—many related to the watershed that supplies water from the mainland, including:
Why are coastal wetlands and estuaries important?
Some of America’s largest cities and communities are located along wetlands and estuaries, such as New York-New Jersey Harbor, Chesapeake Bay, San Francisco Bay, Biscayne Bay, Puget Sound, Tampa Bay, and many others. Coastal wetlands and estuaries provide numerous critical benefits and services to society—these are known as ecosystem services. Specifically, they:
-
Protect coastal communities from storms and flooding
-
Help prevent erosion
-
Provide essential food, refuge, and nursery habitat for commercially and recreationally important species
-
Improve water quality by filtering runoff and absorbing excess nutrients
-
Decrease the effects of climate change by storing large quantities of the greenhouse gas carbon dioxide from the atmosphere
-
Provide recreational opportunities like boating, hiking, hunting, fishing, kayaking, and wildlife/bird watching
-
Serve as important areas of commerce, shipping activity, and ocean/port access
USGS Research
Estuaries are the mixing point between land and coasts. The water that flows into them is critical to their high biological productivity. Changes to the quality, quantity, and type of water, sediment, and river flow affect everything from the types of plants and animals that live there, the landscapes that develop, and the ecosystem services provided to coastal communities.
USGS scientists work in and bring expertise in hydrology, water chemistry, ecology, and sediment transport science, to integrate various information that can help forecast, predict, and identify threats or effects of changes. This helps decision-makers and resources managers develop science-based policies that balance sustainable use of these rich coastal ecosystems while maintaining their productivity for the benefit of all.
Storms, sea-level rise, and other elements of climate and coastal change often involve coastal engineering in order to accommodate human needs. These natural systems are highly adaptable. Many plant and animal species can move and grow in response to changing conditions, but some management actions like building coastal defense structures (e.g., seawalls and dikes) and maintaining roads restrict the ability of these coastal ecosystems to adapt or migrate. When estuaries and coastal wetlands are constrained by seawalls or unable to move, they can be inundated, dried out or exposed to too much salt or fresh water. When they are depleted or destroyed, the benefits and services they provide to people and the environment could be diminished or lost. The loss of estuary and wetland health can have far-reaching effects such as reduced fish catch, diminished water quality, algal blooms, and lost habitat and food sources for many migratory species.
The USGS conducts a variety of research on coastal wetlands and estuaries that support management decisions of federal, state, regional, and local partners and help in evaluating the effectiveness of restoring these valuable habitats so that will continue to provide the most benefits to society and ecosystems.
The USGS creates topobathymetric digital elevation models (DEMs) to assist with identifying flood, hurricane, and sea-level rise inundation hazard zones. These maps also assist with other earth science applications such as the development of sediment transport and storm surge models. The DEM data are important for a range of applications needed for climate change analysis in sensitive coastal regions. Access the Coastal National Elevation Database (CoNED) viewer.
Past, Present, and Future Conditions
USGS scientists collect basic observational data on physical processes (e.g., storms and sea-level rise) and human activities (e.g., nutrient loading), develop numerical models of these data, and apply models to understand the past, present, and future states of these ecosystems. Through this work, USGS scientists can assess vulnerability (e.g., UnVegetated-Vegetated marsh Ratio or UVVR), water-quality conditions, and resilience and identify human activities that are preventing wetland migration and causing tidal restriction, impoundments, and other issues causing degradation.
Blue Carbon
Additionally, USGS scientists are working to better understand blue carbon—carbon that is stored in coastal and marine ecosystems. Terrestrial and aquatic ecosystems can capture and store carbon dioxide from the atmosphere, a process known as carbon sequestration. Though coastal ecosystems, such as wetlands, may be smaller in size when compared to say, a forest, they can sequester more carbon per unit area, making them an incredible climate change mitigation tool.
USGS scientists are researching how environmental changes and human activities (e.g., land use management) can impact the ability of coastal wetlands and estuaries to sequester carbon and store it in soil and plant materials. These ecosystems are powerful carbon sinks and store carbon that has accumulated over hundreds to thousands of years. However, when coastal ecosystems are degraded or destroyed, their capacity to store carbon is diminished, and the carbon stored there can be released back into the atmosphere. Improved management of coastal wetlands and estuaries, leading to enhanced conservation and restoration, is therefore a crucial climate change mitigation strategy. Ultimately, USGS blue carbon research and science-based tools will help guide decision-making regarding climate change mitigation and adaptation, wetland restoration, coastal resilience, and carbon sequestration and storage.
Learn more.
CO2 uptake offsets other greenhouse gas emissions from salt marshes with chronic nitrogen loading
Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands
Impoundment increases methane emissions in Phragmites-invaded coastal wetlands
Modeling the dynamics of salt marsh development in coastal land reclamation
How much marsh restoration is enough to deliver wave attenuation coastal protection benefits?
Quantifying slopes as a driver of forest to marsh conversion using geospatial techniques: Application to Chesapeake Bay coastal-plain, USA
Sediment transport in a restored, river-influenced Pacific Northwest estuary
Predicting the success of future investments in coastal and estuarine ecosystem restorations is limited by scarce data quantifying sediment budgets and transport processes of prior restorations. This study provides detailed analyses of the hydrodynamics and sediment fluxes of a recently restored U.S. Pacific Northwest estuary, a 61 ha former agricultural area near the mouth of the Stillaguamish Ri
Simple metrics predict salt-marsh sediment fluxes
Land area changes in coastal Louisiana after Hurricanes Katrina and Rita
Land Area Changes in Coastal Louisiana After the 2005 Hurricanes: A Series of Three Maps
Priority Landscapes: San Francisco Bay-Delta
Sediment Transport in Coastal Environments
Coastal Habitats in Puget Sound
Coastal watershed and estuary restoration in the Monterey Bay area
Columbia River estuary
Sediment transport between estuarine habitats in San Francisco Bay
Carbon and Water Budgeting Along Upper Estuaries: Developing Linkages to Environmental Change
Carbon and Water Budgeting Along Upper Estuaries: Developing Linkages to Environmental Change
Coastal National Elevation Dataset (CoNED) - Topobathymetric Digital Elevation Model (TBDEM) Data Dictionary
Wetland Carbon Cycling: Monitoring and Forecasting in a Changing World
Wetland Carbon Cycling: Monitoring and Forecasting in a Changing World
Research Vessel David H. Peterson
A Century of Change in Grand Bay, Mississippi and Alabama
The Grand Bay National Estuarine Research Reserve (NERR) in southern Mississippi was established to provide recreational and educational opportunities along with facilitating science-based coastal management; therefore, Grand Bay is the subject of numerous short and long-term environmental studies. The reserve is an important location for research and conservation.
Suspended-sediment concentrations and loss-on-ignition from water samples collected in the Herring River during 2018-19 in Wellfleet, MA (ver 1.1, March 2023)
Grand Bay, MS/AL Estuarine Shorelines and Rates of Change
This collection contains estuarine shorelines and rates of change for Grand Bay, Mississippi/Alabama (1848-2017).
Breton Island, LA Estuarine Shorelines and Rates of Change
This collection contains estuarine shorelines and rates of change for Breton Island, Louisiana.
Barnegat Bay, NJ Estuarine Shorelines and Rates of Change
This collection contains estuarine shorelines and rates of change for Barnegat and Great Bay, New Jersey.
Idealized COAWST numerical model for testing marsh wave thrust and lateral retreat dynamics routines
National UVVR Map
This map shows the unvegetated and vegetated area of coastal wetlands and adjacent land (inland and shorelines) for the Conterminous United States computed from 2014-2018 Landsat imagery at ~30 meter horizontal resolution.
COAWST Modeling System v3.4
CoNED Project Viewer
The Coastal National Elevation Database (CoNED) Project Viewer is a portal to the topobathymetric models created with the expertise of the expertise of the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center near Sioux Falls, SD.
- Overview
What is a coastal wetland?
Coastal wetlands are transitional areas between dry land and open water that are either permanently or seasonally inundated with fresh, brackish, or salt water. They contain a range of plant and animal species that are uniquely adapted to the wet soil conditions, the type of water present, and the degree of inundation.
Types of coastal wetlands include salt marshes, freshwater marshes, seagrass meadows, mangrove swamps, and forested swamps.
Coastal wetlands are among the most productive and valuable ecosystems in the world—comparable to even rainforests and coral reefs. They are often referred to as natural sponges or nature’s kidneys because they slow the flow of water across the watershed, filter out pollutants and excess nutrients, and even absorb and store large quantities of the greenhouse gas carbon dioxide. These capabilities help protect coastal communities from storms and flooding, prevent erosion, improve water quality, and decrease the effects of climate change. Listen to the audio-described version. What is an estuary?
Estuaries are created where watersheds meet the ocean, bringing land-based waters and salt water from the ocean together. A dynamic ecosystem is created where river flows meet ocean tides. These regions offer food sources and shelter for many different species, including humans.
Estuaries also face a variety of issues that alter their productivity as an ecosystem—many related to the watershed that supplies water from the mainland, including:
USGS studies coastal wetlands and estuaries around the Nation. Here are just a few examples. Why are coastal wetlands and estuaries important?
Some of America’s largest cities and communities are located along wetlands and estuaries, such as New York-New Jersey Harbor, Chesapeake Bay, San Francisco Bay, Biscayne Bay, Puget Sound, Tampa Bay, and many others. Coastal wetlands and estuaries provide numerous critical benefits and services to society—these are known as ecosystem services. Specifically, they:
-
Protect coastal communities from storms and flooding
-
Help prevent erosion
-
Provide essential food, refuge, and nursery habitat for commercially and recreationally important species
-
Improve water quality by filtering runoff and absorbing excess nutrients
-
Decrease the effects of climate change by storing large quantities of the greenhouse gas carbon dioxide from the atmosphere
-
Provide recreational opportunities like boating, hiking, hunting, fishing, kayaking, and wildlife/bird watching
-
Serve as important areas of commerce, shipping activity, and ocean/port access
USGS Research
Estuaries are the mixing point between land and coasts. The water that flows into them is critical to their high biological productivity. Changes to the quality, quantity, and type of water, sediment, and river flow affect everything from the types of plants and animals that live there, the landscapes that develop, and the ecosystem services provided to coastal communities.
USGS scientists work in and bring expertise in hydrology, water chemistry, ecology, and sediment transport science, to integrate various information that can help forecast, predict, and identify threats or effects of changes. This helps decision-makers and resources managers develop science-based policies that balance sustainable use of these rich coastal ecosystems while maintaining their productivity for the benefit of all.
Salt marshes provide important economic and ecologic services but are vulnerable to habitat loss, particularly due to shoreline erosion from storms and sea level rise. Sediments eroded at the marsh edge are either delivered onto the marsh platform or into the estuary, the latter resulting in a net loss to the marsh sediment budget and released soil carbon. Knowledge on the timing, distance, and quantity of sediment deposition versus shoreline erosion along the marsh-estuary interface is critical for evaluating the overall health and vulnerability of coastal marshes to future scenarios of sea level rise and storms. This image is a depiction of what happens to sediments as they are eroded at the marsh edge, delivered into the estuary and onto the marsh platform, leading to a higher marsh platform elevation at the marsh shoreline, but loss of wetland habitat area at the eroding shoreline edge. Storms, sea-level rise, and other elements of climate and coastal change often involve coastal engineering in order to accommodate human needs. These natural systems are highly adaptable. Many plant and animal species can move and grow in response to changing conditions, but some management actions like building coastal defense structures (e.g., seawalls and dikes) and maintaining roads restrict the ability of these coastal ecosystems to adapt or migrate. When estuaries and coastal wetlands are constrained by seawalls or unable to move, they can be inundated, dried out or exposed to too much salt or fresh water. When they are depleted or destroyed, the benefits and services they provide to people and the environment could be diminished or lost. The loss of estuary and wetland health can have far-reaching effects such as reduced fish catch, diminished water quality, algal blooms, and lost habitat and food sources for many migratory species.
Graphic showing how drought can impact coastal estuarine ecosystems in the U.S. Caribbean. The USGS conducts a variety of research on coastal wetlands and estuaries that support management decisions of federal, state, regional, and local partners and help in evaluating the effectiveness of restoring these valuable habitats so that will continue to provide the most benefits to society and ecosystems.
The USGS creates topobathymetric digital elevation models (DEMs) to assist with identifying flood, hurricane, and sea-level rise inundation hazard zones. These maps also assist with other earth science applications such as the development of sediment transport and storm surge models. The DEM data are important for a range of applications needed for climate change analysis in sensitive coastal regions. Access the Coastal National Elevation Database (CoNED) viewer.
Past, Present, and Future Conditions
USGS scientists collect basic observational data on physical processes (e.g., storms and sea-level rise) and human activities (e.g., nutrient loading), develop numerical models of these data, and apply models to understand the past, present, and future states of these ecosystems. Through this work, USGS scientists can assess vulnerability (e.g., UnVegetated-Vegetated marsh Ratio or UVVR), water-quality conditions, and resilience and identify human activities that are preventing wetland migration and causing tidal restriction, impoundments, and other issues causing degradation.
Researchers with the [U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) have been working within the Grand Bay National Estuarine Research Reserve and Grand Bay National Wildlife Refuge to track how marsh shorelines are changing over time, study how sediment moves between the marsh and the estuary, and predict how the marsh is responding to sea-level rise. Any use of trade, firm, logos, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Map showing blue carbon study locations in the United States: Nisqually National Wildlife Refuge, San Francisco Bay National Estuarine Research Reserve, Barataria-Terrebonne National Estuary Program, Shark River, Ding Darling National Wildlife Refuge, LCMAP mangrove change detection pilot study, Great Dismal Swamp and Pocosin Lake National Wildlife Refuge, Chesapeake Bay Smithsonian Environmental Research Center, Waquoit Bay National Estuarine Research Reserve. Blue Carbon
Additionally, USGS scientists are working to better understand blue carbon—carbon that is stored in coastal and marine ecosystems. Terrestrial and aquatic ecosystems can capture and store carbon dioxide from the atmosphere, a process known as carbon sequestration. Though coastal ecosystems, such as wetlands, may be smaller in size when compared to say, a forest, they can sequester more carbon per unit area, making them an incredible climate change mitigation tool.
USGS scientists are researching how environmental changes and human activities (e.g., land use management) can impact the ability of coastal wetlands and estuaries to sequester carbon and store it in soil and plant materials. These ecosystems are powerful carbon sinks and store carbon that has accumulated over hundreds to thousands of years. However, when coastal ecosystems are degraded or destroyed, their capacity to store carbon is diminished, and the carbon stored there can be released back into the atmosphere. Improved management of coastal wetlands and estuaries, leading to enhanced conservation and restoration, is therefore a crucial climate change mitigation strategy. Ultimately, USGS blue carbon research and science-based tools will help guide decision-making regarding climate change mitigation and adaptation, wetland restoration, coastal resilience, and carbon sequestration and storage.
Model-data assimilation workflow for Land Use and Carbon Scenario Simulator (LUCAS) model in coastal “blue carbon” ecosystems of Louisiana. Measuring ecosystem-atmosphere carbon exchange at the leaf-level (left) using a porometer and at the ecosystem-level (right) using eddy covariance.
Learn more. - Publications
CO2 uptake offsets other greenhouse gas emissions from salt marshes with chronic nitrogen loading
Coastal wetlands are known for exceptional productivity, but they also receive intense land-based nitrogen (N) loading. In Narragansett Bay, RI (USA), coastal ecosystems have received anthropogenic N inputs from wastewater for more than two centuries. Greenhouse gas fluxes were studied throughout a growing season (2016) in three coastal wetlands with contrasting histories of nitrogen loading. TheAuthorsSerena Moseman-Valtierra, Katelyn Szura, Meagan Eagle, Carol Thornber, Faming WangSoil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands
Coastal wetlands provide key ecosystem services, including substantial long-term storage of atmospheric CO2 in soil organic carbon pools. This accumulation of soil organic matter is a vital component of elevation gain in coastal wetlands responding to sea-level rise. Anthropogenic activities that alter coastal wetland function through disruption of tidal exchange and wetland water levels are ubiquAuthorsMeagan Eagle, Kevin D. Kroeger, Amanda C. Spivak, Faming Wang, Jianwu Tang, Omar I. Abdul-Aziz, Khandker S. Ishtiaq, Jennifer A. O'Keefe Suttles, Adrian G. MannImpoundment increases methane emissions in Phragmites-invaded coastal wetlands
Saline tidal wetlands are important sites of carbon sequestration and produce negligible methane (CH4) emissions due to regular inundation with sulfate-rich seawater. Yet, widespread management of coastal hydrology has restricted tidal exchange in vast areas of coastal wetlands. These ecosystems often undergo impoundment and freshening, which in turn cause vegetation shifts like invasion by PhragmAuthorsRebecca Sanders-DeMott, Meagan Eagle, Kevin D. Kroeger, Faming Wang, Thomas W. Brooks, Jennifer A. O'Keefe Suttles, Sydney K. Nick, Adrian G. Mann, Jianwu TangModeling the dynamics of salt marsh development in coastal land reclamation
The valuable ecosystem services of salt marshes are spurring marsh restoration projects around the world. However, it is difficult to determine the final vegetated area based on physical drivers. Herein, we use a 3D fully coupled vegetation-hydrodynamic-morphological modeling system (COAWST), to simulate the final vegetation cover and the timescale to reach it under various forcing conditions. MarAuthorsYiyang Xu, Tarandeep S. Kalra, Neil K. Ganju, Sergio FagherazziHow much marsh restoration is enough to deliver wave attenuation coastal protection benefits?
As coastal communities grow more vulnerable to sea-level rise and increased storminess, communities have turned to nature-based solutions to bolster coastal resilience and protection. Marshes have significant wave attenuation properties and can play an important role in coastal protection for many communities. Many restoration projects seek to maximize this ecosystem service but how much marsh resAuthorsKatherine A. Castagno, Neil K. Ganju, Michael W. Beck, Alison Bowden, Steven B. ScyphersQuantifying slopes as a driver of forest to marsh conversion using geospatial techniques: Application to Chesapeake Bay coastal-plain, USA
Coastal salt marshes, which provide valuable ecosystem services such as flood mitigation and carbon sequestration, are threatened by rising sea level. In response, these ecosystems migrate landward, converting available upland into salt marsh. In the coastal-plain surrounding Chesapeake Bay, United States, conversion of coastal forest to salt marsh is well-documented and may offset salt marsh lossAuthorsGrace Damore Molino, Zafer Defne, Alfredo Aretxabaleta, Neil K. Ganju, Joel A. CarrSediment transport in a restored, river-influenced Pacific Northwest estuary
Predicting the success of future investments in coastal and estuarine ecosystem restorations is limited by scarce data quantifying sediment budgets and transport processes of prior restorations. This study provides detailed analyses of the hydrodynamics and sediment fluxes of a recently restored U.S. Pacific Northwest estuary, a 61 ha former agricultural area near the mouth of the Stillaguamish Ri
AuthorsDaniel J. Nowacki, Eric E. GrossmanSimple metrics predict salt-marsh sediment fluxes
The growth (or decay) of salt marshes depends on suspended-sediment flux into and out of the marsh. Suspended-sediment concentration (SSC) is a key element of the flux, and SSC-based metrics reflect the long-term sediment-flux trajectories of a variety of salt marshes. One metric, the flood–ebb SSC differential, correlates with area-normalized sediment flux and can indicate salt-marsh resilience oAuthorsDaniel J. Nowacki, Neil K. GanjuLand area changes in coastal Louisiana after Hurricanes Katrina and Rita
Comparison of classified Landsat Thematic Mapper (TM) satellite imagery acquired before and after the landfalls of Hurricanes Katrina (August 29, 2005) and Rita (September 24, 2005) demonstrated that water area increased by 217 mi2 (562 km2) in coastal Louisiana. Approximately 82 mi2 (212 km2) of new water areas were in areas primarily impacted by Katrina (Mississippi River Delta basin, Breton SouAuthorsJohn A. BarrasLand Area Changes in Coastal Louisiana After the 2005 Hurricanes: A Series of Three Maps
This report includes three posters with analyses of net land area changes in coastal Louisiana after the 2005 hurricanes (Katrina and Rita). The first poster presents a basic analysis of net changes from 2004 to 2005; the second presents net changes within marsh communities from 2004 to 2005; and the third presents net changes from 2004 to 2005 within the historical perspective of change in coastaAuthorsJohn A. Barras - Science
Filter Total Items: 36
Priority Landscapes: San Francisco Bay-Delta
The San Francisco Bay-Delta PES is one way that USGS continues to provide science for the restoration and conservation of the SF Bay and its watershed. USGS research topics range from wetland restoration in the Bay to restoring habitat for anadromous fish (e.g., salmon) in the uplands. USGS has made several important discoveries critical to the fundamental understanding of this system and...Sediment Transport in Coastal Environments
Our research goals are to provide the scientific information, knowledge, and tools required to ensure that decisions about land and resource use, management practices, and future development in the coastal zone and adjacent watersheds can be evaluated with a complete understanding of the probable effects on coastal ecosystems and communities, and a full assessment of their vulnerability to natural...Coastal Habitats in Puget Sound
A Pacific Northwest icon, Puget Sound is the second-largest estuary in the United States. Its unique geology, climate, and nutrient-rich waters produce and sustain biologically productive coastal habitats. These same natural characteristics also contribute to a high quality of life that has led to growth in human population and urbanization. This growth has played a role in degrading the Sound...Coastal watershed and estuary restoration in the Monterey Bay area
Objectives: Support further work by the USGS and collaborating federal, state, and local agencies and academic partners in analyzing the effectiveness of restoration work in coastal watersheds and estuaries in the Monterey Bay area. The USGS will play a supporting role in field efforts led by NOAA and California State University - Monterey Bay to measure physical and ecological changes in the...Columbia River estuary
This research is part of the project “Sediment Transport in Coastal Environments.” We aim to support regional sediment management in the Columbia River littoral cell by monitoring and modeling shoreline change, modeling fate of disposed dredged material, and studying bedform morphology.Sediment transport between estuarine habitats in San Francisco Bay
We investigate mechanisms of sediment transport, resuspension dynamics in shoals, wave evolution in the shallows, wave attenuation in marshes, and transport of sediment between mudflats and marshes. We produce data sets for calibration of and comparison with sediment transport models, including wave parameters, suspended sediment concentration, and sediment flux.Carbon and Water Budgeting Along Upper Estuaries: Developing Linkages to Environmental Change
WARC Researchers are studying carbon, water, and nutrient cycling in upper estuarine wetlands.Carbon and Water Budgeting Along Upper Estuaries: Developing Linkages to Environmental Change
WARC Researchers are studying carbon, water, and nutrient cycling in upper estuarine wetlands.Coastal National Elevation Dataset (CoNED) - Topobathymetric Digital Elevation Model (TBDEM) Data Dictionary
The Data Dictionaries are a set of information describing the contents, format, and structure of elements for EarthExplorer products.Wetland Carbon Cycling: Monitoring and Forecasting in a Changing World
WARC's wetland carbon cycle science team is working to improve model parameterizations and formulations and reduce forecast uncertainty in ecosystem modeling.Wetland Carbon Cycling: Monitoring and Forecasting in a Changing World
WARC's wetland carbon cycle science team is working to improve model parameterizations and formulations and reduce forecast uncertainty in ecosystem modeling.Research Vessel David H. Peterson
The Research Vessel David H. Peterson begain service with the U.S. Geological Survey in 2015. Named after a founder of the Water Quality of San Francisco Bay Research and Monitoring Project, this vessel is a high-tech scientific platform for estuarine research. Learn more about how the R/V David H. Peterson makes our research possible. - Data and More
A Century of Change in Grand Bay, Mississippi and Alabama
The Grand Bay National Estuarine Research Reserve (NERR) in southern Mississippi was established to provide recreational and educational opportunities along with facilitating science-based coastal management; therefore, Grand Bay is the subject of numerous short and long-term environmental studies. The reserve is an important location for research and conservation.
Suspended-sediment concentrations and loss-on-ignition from water samples collected in the Herring River during 2018-19 in Wellfleet, MA (ver 1.1, March 2023)
The Herring River in Wellfleet, MA is a tidally-restricted estuary system. Management options including potential restoration of unrestricted tidal flows require an understanding of pre-restoration sediment conditions. Altering future tidal flows may cause changes in net sediment flux and direction, which could affect marsh restoration and aquaculture in Wellfleet Harbor. This research aims to meaGrand Bay, MS/AL Estuarine Shorelines and Rates of Change
This collection contains estuarine shorelines and rates of change for Grand Bay, Mississippi/Alabama (1848-2017).
Breton Island, LA Estuarine Shorelines and Rates of Change
This collection contains estuarine shorelines and rates of change for Breton Island, Louisiana.
Barnegat Bay, NJ Estuarine Shorelines and Rates of Change
This collection contains estuarine shorelines and rates of change for Barnegat and Great Bay, New Jersey.
Idealized COAWST numerical model for testing marsh wave thrust and lateral retreat dynamics routines
There are two idealized domains developed in this work to test the marsh dynamics in the COAWST modeling framework. 1. First idealized domain is to test and verify the lateral thrust calculations. 2. Second idealized domain is to test the implementation of lateral retreat formulations.National UVVR Map
This map shows the unvegetated and vegetated area of coastal wetlands and adjacent land (inland and shorelines) for the Conterminous United States computed from 2014-2018 Landsat imagery at ~30 meter horizontal resolution.
COAWST Modeling System v3.4
Coupled ocean atmosphere wave sediment transport modeling systemCoNED Project Viewer
The Coastal National Elevation Database (CoNED) Project Viewer is a portal to the topobathymetric models created with the expertise of the expertise of the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center near Sioux Falls, SD.
- Multimedia
Filter Total Items: 43
- News